Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To find the transitive closers of the relation \(\{ (b,c),(b,e),(c,e),(d,a),(e,b),(e,c)\} \) with the use of algorithm one.

Short Answer

Expert verified

The transitive closers of the relation \(\{ (a,e)(b,a),(b,d),(c,d),(d,a),(d,c),(e,a),(e,b)(e,c)(e,e)\} \) with the use of algorithm one is \(A \times A;A = \{ a,b,c,d,e\} \).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

The relation \(\{ (a,e)(b,a),(b,d),(c,d),(d,a),(d,c),(e,a),(e,b)(e,c)(e,e)\} \).

02

Concept used of transitive closure property

The transitive closure of\(R\)is defined as the smallest transitive relation of\(R\).

03

Find transitive closers

Consider the relation\(\{ (a,e)(b,a),(b,d),(c,d),(d,a),(d,c),(e,a),(e,b)(e,c)(e,e)\} \)

From the above given relation

We can write the matrix set as

\(\begin{array}{l}{M_R} = \left( {\begin{array}{*{20}{l}}0&0&0&0&1\\1&0&0&1&0\\0&0&0&1&0\\1&0&1&0&0\\1&1&1&0&1\end{array}} \right)\\{M_R}^2 = \left( {\begin{array}{*{20}{l}}1&1&1&0&1\\1&0&1&0&1\\1&0&1&0&0\\0&0&0&1&1\\1&1&1&1&1\end{array}} \right)\\{M_R}^3 = \left( {\begin{array}{*{20}{l}}1&1&1&1&1\\1&1&1&1&1\\0&0&0&1&1\\1&1&1&0&1\\1&1&1&1&1\end{array}} \right)\\{M_R}^4 = \left( {\begin{array}{*{20}{l}}1&1&1&1&1\\1&1&1&1&1\\1&1&1&0&1\\1&1&1&1&1\\1&1&1&1&1\end{array}} \right)\\{M_R}^5 = \left( {\begin{array}{*{20}{l}}1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\end{array}} \right)\end{array}\)

Therefore,

The transitive closers of the relation \(\{ (a,e)(b,a),(b,d),(c,d),(d,a),(d,c),(e,a),(e,b)(e,c)(e,e)\} \) with the use of algorithm one is \(A \times A;A = \{ a,b,c,d,e\} \).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free