Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that if \(R\) and \(S\) are both \(n\)-ary relations, then

\({P_{{i_1},{i_2}, \ldots ,{i_m}}}(R \cup S) = {P_{{i_1},{i_2}, \ldots ,{i_m}}}(R) \cup {P_{{i_1},{i_2}, \ldots ,{i_m}}}(S)\).

Short Answer

Expert verified

The resultant answer is\({P_{{i_1},{i_2}, \ldots ,{i_m}}}(R \cup S) = {P_{{i_1},{i_2}, \ldots ,{i_m}}}(R) \cup {P_{{i_1},{i_2}, \ldots ,{i_m}}}(S)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

\({P_{{i_1},{i_2}, \ldots ,{i_m}}}(R \cup S) = {P_{{i_1},{i_2}, \ldots ,{i_m}}}(R) \cup {P_{{i_1},{i_2}, \ldots ,{i_m}}}(S)\)is given.

02

Concept ofsets

The concept of set is a very basic one.

It is simple; yet, it suffices as the basis on which all abstract notions in mathematics can be built.\(A\)set is determined by its elements.

If\(A\)is a set, write\(x \in A\)to say that\(x\)is an element of\(A\).

03

Simplify the expression

This \({P_{{i_1},{i_2}, \ldots ,{i_m}}}(R \cup S)\) represents all possible \(n\)-tuples in \(R \cup S\) restricted to the \({i_1}\)st, \({i_2}\)nd, \( \ldots ,{i_m}\)th attributes.

\({P_{{i_1},{i_2}, \ldots ,{i_m}}}(R \cup S) = \left\{ {\left( {{a_{{i_1}}},{a_{{i_2}}}, \ldots ,{a_{{i_m}}}} \right)\mid \left( {{a_1},{a_2}, \ldots ,{a_n}} \right) \in R \cup S} \right\}\)

\({P_{{i_1},{i_2}, \ldots ,{i_m}}}(R)\)represents all possible \(n\)-tuples in \(R\) restricted to the \({i_1}\)st, \({i_2}\)nd, \( \ldots ,{i_m}\)th attributes.

\({P_{{i_1},{i_2}, \ldots ,{i_m}}}(R) = \left\{ {\left( {{a_{{i_1}}},{a_{{i_2}}}, \ldots ,{a_{{i_m}}}} \right)\mid \left( {{a_1},{a_2}, \ldots ,{a_n}} \right) \in R} \right\}\)

\({P_{{i_1},{i_2}, \ldots ,{i_m}}}(S)\)represents all possible \(n\)-tuples in \(S\) restricted to the \({i_1}\)st, \({i_2}\)nd, \( \ldots ,{i_m}\)th attributes.

\({P_{{i_1},{i_2}, \ldots ,{i_m}}}(S) = \left\{ {\left( {{a_{{i_1}}},{a_{{i_2}}}, \ldots ,{a_{{i_m}}}} \right)\mid \left( {{a_1},{a_2}, \ldots ,{a_n}} \right) \in S} \right\}\)

The union of two sets contain all elements that are in either set (or in both sets):

\(\begin{array}{l}{P_{{i_1},{i_2}, \ldots ,{i_m}}}(R) \cup {P_{{i_1},{i_2}, \ldots ,{i_m}}}(S) = \left\{ {\left( {{a_{{i_1}}},{a_{{i_2}}}, \ldots ,{a_{{i_m}}}} \right)\mid \left( {{a_1},{a_2}, \ldots ,{a_n}} \right) \in R} \right\} \cup \left\{ {\left( {{a_{{i_1}}},{a_{{i_2}}}, \ldots ,{a_{{i_m}}}} \right) \in S\mid \left( {{a_1},{a_2}, \ldots ,{a_n}} \right) \in S} \right\}\\{P_{{i_1},{i_2}, \ldots ,{i_m}}}(R) \cup {P_{{i_1},{i_2}, \ldots ,{i_m}}}(S) = \left\{ {\left( {{a_{{i_1}}},{a_{{i_2}}}, \ldots ,{a_{{i_m}}}} \right)\mid \left( {{a_1},{a_2}, \ldots ,{a_n}} \right) \in R} \right.\\{P_{{i_1},{i_2}, \ldots ,{i_m}}}(R) \cup {P_{{i_1},{i_2}, \ldots ,{i_m}}}(S) = \left\{ {\left( {{a_{{i_1}}},{a_{{i_2}}}, \ldots ,{a_{{i_m}}}} \right)\mid \left( {{a_1},{a_2}, \ldots ,{a_n}} \right) \in R \cup S} \right\}\end{array}\)Therefore,

\({P_{{i_1},{i_2}, \ldots ,{i_m}}}(R \cup S) = \left\{ {\left( {{a_{{i_1}}},{a_{{i_2}}}, \ldots ,{a_{{i_m}}}} \right)\mid \left( {{a_1},{a_2}, \ldots ,{a_n}} \right) \in R \cup S} \right\} = {P_{{i_1},{i_2}, \ldots ,{i_m}}}(R) \cup {P_{{i_1},{i_2}, \ldots ,{i_m}}}(S)\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

How many transitive relations are there on a set with \(n\) elements if

a) \(n = 1\) ?

b) \(n = 2\) ?

c) \(n = 3\) ?

The 5-tuples in a 5-ary relation represent these attributes of all people in the United States: name, Social Security number, street address, city, state.

a) Determine a primary key for this relation.

b) Under what conditions would (name, street address) be a composite key?

c) Under what conditions would (name, street address, city) be a composite key?

Exercises 34โ€“37 deal with these relations on the set of real numbers:

\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the โ€œgreater thanโ€ relation,

\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the โ€œgreater than or equal toโ€ relation,

\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the โ€œless thanโ€ relation,

\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the โ€œless than or equal toโ€ relation,

\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the โ€œequal toโ€ relation,

\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the โ€œunequal toโ€ relation.

36. Find

(a) \({R_1}^\circ {R_1}\).

(b) \({R_1}^\circ {R_2}\).

(c) \({R_1}^\circ {R_3}\).

(d) \({R_1}^\circ {R_4}\).

(e) \({R_1}^\circ {R_5}\).

(f) \({R_1}^\circ {R_6}\).

(g) \({R_2}^\circ {R_3}\).

(h) \({R_3}^\circ {R_3}\).

In Exercises 25โ€“27 list all ordered pairs in the partial ordering with the accompanying Hasse diagram.26.

Assuming that no new \(n\)-tuples are added, find all the primary keys for the relations displayed in

a) Table 3

b) Table 5

c) Table 6

d) Table 8

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free