Chapter 9: Q25E (page 631)
In Exercises 25–27 list all ordered pairs in the partial ordering with the accompanying Hasse diagram.
25.
Short Answer
The list of all odered pairs are \(\{ (a,a),(b,b),(c,c),(d,d),(a,b),(a,c),(a,d),(b,c),(b,d)\} \).
Chapter 9: Q25E (page 631)
In Exercises 25–27 list all ordered pairs in the partial ordering with the accompanying Hasse diagram.
25.
The list of all odered pairs are \(\{ (a,a),(b,b),(c,c),(d,d),(a,b),(a,c),(a,d),(b,c),(b,d)\} \).
All the tools & learning materials you need for study success - in one app.
Get started for freeExercises 34–37 deal with these relations on the set of real numbers:
\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the “greater than” relation,
\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the “greater than or equal to” relation,
\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the “less than” relation,
\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the “less than or equal to” relation,
\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the “equal to” relation,
\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the “unequal to” relation.
35. Find
(a) \({R_2} \cup {R_4}\).
(b) \({R_3} \cup {R_6}\).
(c) \({R_3} \cap {R_6}\).
(d) \({R_4} \cap {R_6}\).
(e) \({R_3} - {R_6}\).
(f) \({R_6} - {R_3}\).
(g) \({R_2} \oplus {R_6}\).
(h) \({R_3} \oplus {R_5}\).
List the 5 -tuples in the relation in Table 8.
To find the transitive closers of the relation \(\{ (1,2),(2,1),(2,3),(3,4),(4,1)\} \) with the use of Warshall’s algorithm.
An example of a relation on a set that is neither symmetric and anti symmetric.
Display the table produced by applying the projection \({P_{1,2,4}}\) to Table 8.
What do you think about this solution?
We value your feedback to improve our textbook solutions.