Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let\(R\)be the relation on the set\(\{ 1,2,3,4,5\} \)containing the ordered pairs\((1,3),(2,4),(3,1),(3,5),(4,3),(5,1)\),\((5,2)\), and\((5,4)\). Find

a)\({R^2}\).

b)\({R^3}\).

c)\({R^4}\).

d)\({R^5}\).

e)\({R^6}\).

f)\({R^*}\).

Short Answer

Expert verified

(a)\({R^2} = \{ (1,1),(1,5),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,5),(5,3),(5,4)\} \)

(b)\(\begin{array}{c}{R^3} = \{ (1,1),(1,2),(1,3),(1,4),(2,1),(2,5),(3,1),(3,3),(3,4),(3,5)\\(4,1),(4,2),(4,3),(4,4),(5,1),(5,3),(5,5)\} \end{array}\),

(c)\(\begin{array}{c}{R^4} = \{ (1,1),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(3,5)\\(4,1),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\),

(d)\(\begin{array}{c}{R^5} = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)\\(4,1),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\),

(e)\(\begin{array}{c}{R^6} = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)\\(4,1),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\),

(f) \(\begin{array}{c}{R^*} = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),\\(4,1),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given

\(\begin{array}{l}R = \{ (1,3),(2,4),(3,1),(3,5),(4,3),(5,1),(5,2),(5,4)\} \\A = \{ 1,2,3,4,5\} \end{array}\)

02

Concept of Relation

A relation\(R\)can be represented by the matrix\({{\bf{M}}_R} = \left( {{m_{ij}}} \right)\)

\({m_{ij}} = \left\{ {\begin{array}{*{20}{l}}1&{{\rm{ if }}\left( {{a_i},{b_j}} \right) \in R}\\0&{{\rm{ if }}\left( {{a_i},{b_j}} \right) \notin R}\end{array}} \right.\)

The composite\(S^\circ R\)consists of all ordered pairs\((a,c)\)for which there exists an element\(b\)such that\((a,b) \in R\)and\((b,c) \in S\).

03

Use Concept of Relation for (a)

\(\begin{array}{l}R = \{ (1,3),(2,4),(3,1),(3,5),(4,3),(5,1),(5,2),(5,4)\} \\A = \{ 1,2,3,4,5\} \end{array}\)

(a) Let us first determine the matrix that represents the relation\(R\)

\({{\bf{M}}_R} = \left( {\begin{array}{*{20}{l}}0&0&1&0&0\\0&0&0&1&0\\1&0&0&0&1\\0&0&1&0&0\\1&1&0&1&0\end{array}} \right)\)

The matrix corresponding to the composite of two relations is the boolean product of the matrices corresponding to the two relations.

\(\begin{array}{c}{{\bf{M}}_{{R^2}}} = {\bf{M}}_R^{2)}\\ = {{\bf{M}}_{R^\circ R}}\\ = {{\bf{M}}_R} \odot {{\bf{M}}_R}\;\;\;\;\left( {{\bf{A}} \odot {\bf{B}} = \left( {\left( {{a_{i1}} \wedge {b_{1j}}} \right) \vee \left( {{a_{i2}} \wedge {b_{2j}}} \right) \vee \ldots .\left( {\left( {{a_{in}} \wedge {b_{nj}}} \right)} \right)} \right.} \right)\\ = \left( {\begin{array}{*{20}{l}}0&0&1&0&0\\0&0&0&1&0\\1&0&0&0&1\\0&0&1&0&0\\1&1&0&1&0\end{array}} \right) \odot \left( {\begin{array}{*{20}{l}}0&0&1&0&0\\0&0&0&1&0\\1&0&0&0&1\\0&0&1&0&0\\1&1&0&1&0\end{array}} \right)\;\;\end{array}\)

Which gives us,

\(\;{{\bf{M}}_{{R^2}}} = \left( {\begin{array}{*{20}{l}}1&0&0&0&1\\0&0&1&0&0\\1&1&1&1&0\\1&0&0&0&1\\0&0&1&1&0\end{array}} \right)\)

We note that the relation\({R^2}\)corresponding to the matrix\({{\bf{M}}_{{R^2}}}\)is then:

\({R^2} = \{ (1,1),(1,5),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,5),(5,3),(5,4)\} \)

04

Use Concept of Relation for (b)

(b) The matrix corresponding to the composite of two relations is the boolean product of the matrices corresponding to the two relations.

\(\begin{array}{c}{{\bf{M}}_{{R^3}}} = {\bf{M}}_R^{(3)}\\ = {{\bf{M}}_{R^\circ {R^2}}}\\ = {{\bf{M}}_{{R^2}}} \odot {{\bf{M}}_R}\;\;\;\;\;\;\left( {{\bf{A}} \odot {\bf{B}} = \left( {\left( {{a_{i1}} \wedge {b_{1j}}} \right) \vee \left( {{a_{i2}} \wedge {b_{2j}}} \right) \vee \ldots \vee \left( {\left( {{a_{in}} \wedge {b_{nj}}} \right)} \right)} \right)} \right)\\ = \left( {\begin{array}{*{20}{l}}1&0&0&0&1\\0&0&1&0&0\\1&1&1&1&0\\1&0&0&0&1\\0&0&1&1&0\end{array}} \right) \odot \left( {\begin{array}{*{20}{l}}0&0&1&0&0\\0&0&0&1&0\\1&0&0&0&1\\0&0&1&0&0\\1&1&0&1&0\end{array}} \right)\end{array}\)

Thus,

\({{\bf{M}}_{{R^3}}} = \left( {\begin{array}{*{20}{l}}1&1&1&1&0\\1&0&0&0&1\\1&0&1&1&1\\1&1&1&1&0\\1&0&1&0&1\end{array}} \right)\)

We note that the relation\({R^3}\)corresponding to the matrix\({{\bf{M}}_{{R^3}}}\)is then:

\({R^3} = \{ (1,1),(1,2),(1,3),(1,4),(2,1),(2,5),(3,1),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(5,1),(5,3),(5,5)\} \)

05

Use Concept of Relation for (c)

(c) The matrix corresponding to the composite of two relations is the boolean product of the matrices corresponding to the two relations.

\(\begin{array}{c}{{\bf{M}}_{{R^4}}} = {\bf{M}}_R^{4)}\\ = {{\bf{M}}_{R^\circ {R^3}}}\\ = {{\bf{M}}_{{R^3}}} \odot {{\bf{M}}_R}\;\;\;\;\left( {{\bf{A}} \odot {\bf{B}} = \left( {\left( {{a_{i1}} \wedge {b_{1j}}} \right) \vee \left( {{a_{i2}} \wedge {b_{2j}}} \right) \vee \ldots \vee \left( {\left( {{a_{in}} \wedge {b_{nj}}} \right)} \right)} \right)} \right)\\ = \left( {\begin{array}{*{20}{l}}1&1&1&1&0\\1&0&0&0&1\\1&0&1&1&1\\1&1&1&1&0\\1&0&1&0&1\end{array}} \right) \odot \left( {\begin{array}{*{20}{l}}0&0&1&0&0\\0&0&0&1&0\\1&0&0&0&1\\0&0&1&0&0\\1&1&0&1&0\end{array}} \right)\end{array}\)

Thus,

\({{\bf{M}}_{{R^4}}} = \left( {\begin{array}{*{20}{l}}1&0&1&1&1\\1&1&1&1&0\\1&1&1&1&1\\1&0&1&1&1\\1&1&1&1&1\end{array}} \right)\)

We note that the relation\({R^4}\)corresponding to the matrix\({{\bf{M}}_{{R^4}}}\)is then:

\(\begin{array}{c}{R^4} = \{ (1,1),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(3,5)\\(4,1),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)

06

Use Concept of Relation for (d)

(d) The matrix corresponding to the composite of two relations is the boolean product of the matrices corresponding to the two relations.

\(\begin{array}{c}{{\bf{M}}_{{R^5}}} = {\bf{M}}_R^{(5)}\\ = {{\bf{M}}_{R^\circ {R^4}}}\\ = {{\bf{M}}_{{R^4}}} \odot {{\bf{M}}_R}\;\;\;\;\left( {\;\left( {\begin{array}{*{20}{l}}{{\bf{A}} \odot {\bf{B}} = \left( {\left( {{a_{i1}} \wedge {b_{1j}}} \right) \vee \left( {{a_{i2}} \wedge {b_{2j}}} \right) \vee \ldots \vee \left( {\left( {{a_{in}} \wedge {b_{nj}}} \right)} \right)} \right)}\end{array}} \right.} \right)\\ = \left( {\begin{array}{*{20}{l}}1&0&1&1&1\\1&1&1&1&0\\1&1&1&1&1\\1&0&1&1&1\\1&1&1&1&1\end{array}} \right) \odot \left( {\begin{array}{*{20}{l}}0&0&1&0&0\\0&0&0&1&0\\1&0&0&0&1\\0&0&1&0&0\\1&1&0&1&0\end{array}} \right)\end{array}\)

Thus,

\({{\bf{M}}_{{R^5}}} = \left( {\begin{array}{*{20}{l}}1&1&1&1&1\\1&0&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\end{array}} \right)\)

We note that the relation\({R^5}\)corresponding to the matrix\({{\bf{M}}_{{R^5}}}\)is then:

\(\begin{array}{c}{R^5} = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)\\(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)

07

Use Concept of Relation for (e) 

(e) The matrix corresponding to the composite of two relations is the boolean product of the matrices corresponding to the two relations.

\(\begin{array}{c}{{\bf{M}}_{{R^{6i}}}} = {\bf{M}}_R^{(6)}\\ = {{\bf{M}}_{R^\circ {R^5}}}\\ = {{\bf{M}}_{{R^5}}} \odot {{\bf{M}}_R}\;\;\;\;\left( {{\bf{A}} \odot {\bf{B}} = \left( {\left( {{a_{i1}} \wedge {b_{1j}}} \right) \vee \left( {{a_{i2}} \wedge {b_{2j}}} \right) \vee \ldots \vee \left( {\left( {{a_{in}} \wedge {b_{nj}}} \right)} \right)} \right)} \right)\\ = \left( {\begin{array}{*{20}{l}}1&1&1&1&1\\1&0&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\end{array}} \right) \odot \left( {\begin{array}{*{20}{l}}0&0&1&0&0\\0&0&0&1&0\\1&0&0&0&1\\0&0&1&0&0\\1&1&0&1&0\end{array}} \right)\end{array}\)

Thus,

\({{\bf{M}}_{{R^{6i}}}} = \left( {\begin{array}{*{20}{l}}1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\end{array}} \right)\)

We note that the relation\({R^6}\)corresponding to the matrix\({{\bf{M}}_{{R^6}}}\)is then:

\(\begin{array}{c}{R^6} = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)\\(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)

08

Use Concept of Relation for (f)

(f) Property\({R^*}\):

\({{\bf{M}}_{{R^*}}} = {{\bf{M}}_R} \vee {\bf{M}}_R^{(2)} \vee \ldots \vee {\bf{M}}_R^{(n)}\)

Since\({\bf{M}}_R^{(5)} = {\bf{M}}_R^{(6)}\)

\({{\bf{M}}_{{R^*}}} = {\bf{M}}_R^{(5)} = \left( {\begin{array}{*{20}{l}}1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\\1&1&1&1&1\end{array}} \right)\)

We note that the relation\({R^*}\)corresponding to the matrix\({{\bf{M}}_{{R^*}}}\)is then:

\(\begin{array}{c}{R^*} = \{ (1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)\\(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\} \end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free