Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To find

a) The matrix representing \({R^2}\).

b) The matrix representing \({R^3}\).

c) The matrix representing \({R^4}\).

Short Answer

Expert verified

a) The matrix is \({M_{{R^2}}} = \left( {\begin{array}{*{20}{l}}0&0&1\\1&1&0\\0&1&1\end{array}} \right)\).

b) The matrix is \({M_{{R^3}}} = \left( {\begin{array}{*{20}{l}}1&1&0\\0&1&1\\1&1&1\end{array}} \right)\).

c) The matrix is \({M_{{R^4}}} = \left( {\begin{array}{*{20}{l}}0&1&1\\1&1&1\\1&1&1\end{array}} \right)\).

Step by step solution

01

Given data

The matrix \({M_R}\) of the relation \(R\).

02

Concept of Matrix 

The ordered pair\((i,j)\)belongs to the relation if and only if the\({(i,j)^{th}}\)entry in the matrix is\(1\).

03

Calculation for the matrix \({R^2}\) 

a)

From matrix formula, we have:

\({M_{{R^2}}} = {M_R}{M_R} = \left( {\begin{array}{*{20}{l}}0&1&0\\0&0&1\\1&1&0\end{array}} \right)\left( {\begin{array}{*{20}{l}}0&1&0\\0&0&1\\1&1&0\end{array}} \right) = \left( {\begin{array}{*{20}{l}}0&0&1\\1&1&0\\0&1&1\end{array}} \right)\)

04

Calculation for matrix \({R^3}\) 

b)

From formula and a), we have:

\({M_{{R^3}}} = {M_R}{M_{{R^2}}} = \left( {\begin{array}{*{20}{l}}0&1&0\\0&0&1\\1&1&0\end{array}} \right)\left( {\begin{array}{*{20}{l}}0&0&1\\1&1&0\\0&1&1\end{array}} \right) = \left( {\begin{array}{*{20}{l}}1&1&0\\0&1&1\\1&1&1\end{array}} \right)\)

05

Calculation for matrix \({R^4}\) 

c)

From formula and part b), we have:

\({M_{{R^4}}} = {M_R}{M_{{R^3}}} = \left( {\begin{array}{*{20}{l}}0&1&0\\0&0&1\\1&1&0\end{array}} \right)\left( {\begin{array}{*{20}{l}}1&1&0\\0&1&1\\1&1&1\end{array}} \right) = \left( {\begin{array}{*{20}{l}}0&1&1\\1&1&1\\1&1&1\end{array}} \right)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free