Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Q35E

Page 607

To prove the closure with respect to the property. Of the relation \(R = \{ (0,0),(0,1),(1,1),(2,2)\} \) on the set \(\{ 0,1,2\} \) does not exist if . is the property" has an odd number of elements."

Q35E

Page 597

Show that if \({{\bf{M}}_R}\) is the matrix representing the relation \(R\), then \({\bf{M}}_R^{(n)}\) is the matrix representing the relation \({R^n}\).

Q35E

Page 631

For the given poset \((\{ \{ 1\} ,\{ 2\} ,\{ 4\} ,\{ 1,2\} ,\{ 1,4\} ,\{ 2,4\} ,\{ 3,4\} ,\{ 1,3,4\} ,\{ 2,3,4\} 1, \subseteq )\) find the greatest lower bound of \(\{ 1,3,4\} ,\{ 2,3,4\} \).

Q36E

Page 597

Given the directed graphs representing two relations, how can the directed graph of the union, intersection, symmetric difference, difference, and composition of these relations be found?

Q36E

Page 616

To determine congruence class \({(4)_8}\), where \(m\) is \(8\).

Q36E

Page 582

Exercises 34–37 deal with these relations on the set of real numbers:

\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the “greater than” relation,

\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the “greater than or equal to” relation,

\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the “less than” relation,

\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the “less than or equal to” relation,

\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the “equal to” relation,

\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the “unequal to” relation.

36. Find

(a) \({R_1}^\circ {R_1}\).

(b) \({R_1}^\circ {R_2}\).

(c) \({R_1}^\circ {R_3}\).

(d) \({R_1}^\circ {R_4}\).

(e) \({R_1}^\circ {R_5}\).

(f) \({R_1}^\circ {R_6}\).

(g) \({R_2}^\circ {R_3}\).

(h) \({R_3}^\circ {R_3}\).

Q37E

Page 582

Exercises 34–37 deal with these relations on the set of real numbers:

\({R_1} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a > b} \right\},\)the “greater than” relation,

\({R_2} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ge b} \right\},\)the “greater than or equal to” relation,

\({R_3} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a < b} \right\},\)the “less than” relation,

\({R_4} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \le b} \right\},\)the “less than or equal to” relation,

\({R_5} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a = b} \right\},\)the “equal to” relation,

\({R_6} = \left\{ {\left( {a,\;b} \right) \in {R^2}|a \ne b} \right\},\)the “unequal to” relation.

37. Find

(a) \({R_2}^\circ {R_1}\).

(b) \({R_2}^\circ {R_2}\).

(c) \({R_3}^\circ {R_5}\).

(d) \({R_4}^\circ {R_1}\)

(e) \({R_5}^\circ {R_3}\).

(f) \({R_3}^\circ {R_6}\).

(g) \({R_4}^\circ {R_6}\).

(h) \({R_6}^\circ {R_6}\).

Q37E

Page 616

Give a description of each of the congruence classes modulo 6.

Q38E

Page 616

To determine the interpretation of the equivalence classes for the equivalence relation.

Q38E

Page 582

To Determine the relation \(R_i^2\) for \(i = 1,2,3,4,5,6\).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks