Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the distributive property of multiplication over addition holds for \({{\rm{Z}}_m}\), where \({\rm{m}} \ge {\rm{2}}\)is an integer.

Short Answer

Expert verified

\({\rm{a}} \cdot {}_m(b + {}_mc) = (a \cdot {}_mb) + {}_m(a \cdot {}_mc)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1

Let \(a,b,c \in {Z_m}\)where \(m \ge 2\). We need to prove

\(a \cdot {}_m(b + {}_mc) = (a \cdot {}_mb) + {}_m(a \cdot {}_mc)\)

Before, we prove it, keep in mind the following four identities:

\(\begin{array}{l}(1)a + {}_mb = (a + b)\bmod {\rm{ m}}\\{\rm{(2)a + }}{}_mb = (a{\rm{ mod m) + }}{}_mb = a + {}_m(b{\rm{ mod m) = (a mod m) + }}{}_m(b{\rm{ mod m)}}\\{\rm{(3)a}} \cdot {}_mb = ab{\rm{ mod m}}\\{\rm{(4)a}} \cdot {}_mb = (a{\rm{ mod m)}} \cdot {}_mb = a \cdot {}_m(b{\rm{ mod m) = (a mod m)}} \cdot {}_m(b{\rm{ mod m)}}\end{array}\)

02

Step 2

Proof:

\(a \cdot {}_m(b + {}_mc)\mathop = \limits^{(1)} a \cdot {}_m((b + c)mod{\rm{ m)}}\)

\(\begin{array}{l}\mathop = \limits^{(4)} a \cdot {}_m(b + c)\\\mathop = \limits^{(3)} a(b + c)\bmod {\rm{ m}}\\{\rm{ = (ab + ac)mod m}}\end{array}\)

(Just regular distributive property)

\((a \cdot {}_mb) + {}_m(a \cdot {}_mc)\mathop = \limits^{(3)} ((ab{\rm{ mod m) + }}{}_m(ac{\rm{ mod m)}}\)

\(\begin{array}{l}\mathop = \limits^{(2)} (ab) + {}_m(ac)\\\mathop = \limits^{(1)} (ab + ac)\bmod {\rm{ m}}\end{array}\)

\(\therefore {\rm{a}} \cdot {}_m(b + {}_mc) = (a \cdot {}_mb) + {}_m(a \cdot {}_mc)\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free