ASSOCIATIVE
Given: \({\rm{a}} \in {{\rm{Z}}_m}\)and \({\rm{b}} \in {{\rm{Z}}_m}\) and \({\rm{m}} \ge {\rm{2}}\).
To proof: \({\rm{(a}} \cdot {}_m{\rm{b)}} \cdot {}_mc = a \cdot {}_m(b \cdot {}_mc)\)
PROOF-
By definition of the multiplication modulo m:
\({\rm{(a}} \cdot {}_mb) \cdot {}_mc\)
\(\begin{array}{l} = ((a \cdot b)\bmod {\rm{ m)}} \cdot {}_mc\\ = (((a \cdot b)\bmod {\rm{ m)}} \cdot {\rm{c)mod m}}\end{array}\)
By corollary \({\rm{(a}} \cdot {}_mb) \cdot {}_mc2\):
\( = ((a \cdot b) \cdot c)\bmod {\rm{ m}}\)
Using the associative property of multiplication in Z:
\( = (a \cdot (b \cdot c))\bmod {\rm{ m}}\)
By corollary \(2\):
\( = (a \cdot (b \cdot c{\rm{ }}\bmod {\rm{ m))mod m}}\)
By definition of the multiplication modulo m:
\( = (a \cdot {}_m(b \cdot c{\rm{ }}\bmod {\rm{ m))}}\)
\( = a \cdot {}_m(b \cdot {}_mc))\).