Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Convert the binary expansion of each of these integers to a decimalexpansion.

  1. \({(1\;\;{\rm{1111)}}_2}\)
  2. \({(10{\rm{ 0000 0001)}}_2}\)
  3. \({(1{\rm{ 0101 0101)}}_2}\)
  4. \({(110{\rm{ 1001 0001 0000)}}_2}\)

Short Answer

Expert verified
  1. \(31\)
  2. \(513\)
  3. \(341\)
  4. \(26896\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept of binary and decimal expansion

If the\(\{ {\rm{base b representation of n\} is }}{{\rm{a}}_0}{a_1}{a_2}...{a_k}\), then\(n = {a_k}{b^k} + {a_{k - 1}}{b^{k - 1}} + ... + {a_1}b + {a_0}\)

02

Step 2(a): Converting the binary expansion of the integer \({(1\;\;{\rm{1111)}}_2}\) to a decimal expansion

The binary expansion has base \(b = 2\)

\(\begin{aligned}{c}{(11111)_2} = 1 \cdot {2^4} + 1 \cdot {2^3} + 1 \cdot {2^2} + 1 \cdot {2^1} + 1 \cdot {2^0}\\ = 16 + 8 + 4 + 2 + 1\\ = 31\end{aligned}\)

Hence the solution is 31.

03

Step 3(b): Converting the binary expansion of the integer \({(10{\rm{ 0000 0001)}}_2}\) to a decimal expansion

The binary expansion has base \(b = 2\)

\(\begin{aligned}{c}{(10{\rm{ 0000 000}}1)_2} = 1 \cdot {2^9} + 0 \cdot {2^8} + 0 \cdot {2^7} + 0 \cdot {2^6} + 0 \cdot {2^5} + 0 \cdot {2^4} + 0 \cdot {2^3} + 0 \cdot {2^2} + 0 \cdot {2^1} + 1 \cdot {2^0}\\ = 512 + 1\\ = 513\end{aligned}\)

Hence the solution is 513.

04

Step 4(c): Converting the binary expansion of the integer \({(1{\rm{ 0101 0101)}}_2}\) to a decimal expansion

The binary expansion has base \(b = 2\)

\(\begin{aligned}{c}{(1{\rm{ 0101 010}}1)_2} = 1 \cdot {2^8} + 0 \cdot {2^7} + 1 \cdot {2^6} + 0 \cdot {2^5} + 1 \cdot {2^4} + 0 \cdot {2^4} + 0 \cdot {2^3} + 1 \cdot {2^2} + 0 \cdot {2^1} + 1 \cdot {2^0}\\ = 256 + 64 + 16 + 4 + 1\\ = 341\end{aligned}\)

Hence the solution is 341.

05

Step 5(d): Converting the binary expansion of the integer \({(110{\rm{ 1001 0001 0000)}}_2}\) to a decimal expansion

The binary expansion has base \(b = 2\)

\(\begin{aligned}{c}{(110{\rm{ 1001 0001 0000}})_2} = 1 \cdot {2^{14}} + 1 \cdot {2^{13}} + 0 \cdot {2^{12}} + 1 \cdot {2^{11}} + 0 \cdot {2^{10}} + 0 \cdot {2^9} + 1 \cdot {2^8} + 0 \cdot {2^7} + 0 \cdot {2^6} + 0 \cdot {2^5} + 1 \cdot {2^4} + 0 \cdot {2^3} + 0 \cdot {2^2} + 0 \cdot {2^1} + 0 \cdot {2^0}\\ = 16384 + 8192 + 2048 + 256 + 16\\ = 26896\end{aligned}\)Hence the solution is 26896.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free