Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use Euclidean algorithm to find

  1. \(\gcd \left( {12,\,18} \right)\)
  2. \(\gcd \left( {111,\,201} \right)\)
  3. \(\gcd \left( {1001,\,1331} \right)\)
  4. \(\gcd \left( {12345,\,54321} \right)\)
  5. \(\gcd \left( {1000,\,5040} \right)\)
  6. \(\gcd \left( {9888,\,6060} \right)\)

Short Answer

Expert verified
  1. \(\gcd \left( {12,\,18} \right) = 6\)
  2. \(\gcd \left( {111,\,201} \right) = 3\)
  3. \(\gcd \left( {1001,\,1331} \right) = 11\)
  4. \(\gcd \left( {12345,\,54321} \right) = 3\)
  5. \(\gcd \left( {1000,\,5040} \right) = 40\)
  6. \(\gcd \left( {9888,\,6060} \right) = 12\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Euclidean Algorithm

Which says that,given integers\(b\)and\(c\)we make repeated application of the division algorithm theorem to obtain a series of equations from

\(\begin{array}{c}a = bq + r\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \le r < b\\b = c{q_1} + {r_1}\,\,\,\,\,\,\,\,\,\,\,\,\,0 \le {r_1} < c\\c = {r_1}{q_2} + {r_2}\,\,\,\,\,\,\,\,\,\,\,\,0 \le {r_2} < {r_1}\\{r_1} = {r_2}{q_3} + {r_3}\,\,\,\,\,\,\,\,\,\,\,\,0 \le {r_3} < {r_2}\\.\\.\\{r_{n - 2}} = {r_{n - 1}}{q_n} + {r_n}\,\,\,\,\,\,\,\,\,\,\,\,0 \le {r_n} < {r_{n - 1}}\\{r_{n - 1}} = {r_n}{q_{n + 1}} + 0\end{array}\)

The greatest common divisor of\(b\)and\(c\)is\({r_n}\)

02

Finding \(\gcd \left( {12,\,18} \right)\)

(a)

By, using Euclid’s Algorithm,

\(\begin{array}{c}18 = 1\left( {12} \right) + 6\\12 = 2\left( 6 \right) + 0\end{array}\)

So, \(\gcd \left( {12,\,18} \right) = 6\)

03

Finding \(\gcd \left( {111,\,201} \right)\)

(b)

By, using Euclid’s Algorithm,

\(\begin{array}{c}201 = 1\left( {111} \right) + 90\\111 = 1\left( {90} \right) + 21\\90 = 4\left( {21} \right) + 6\\21 = 3\left( 6 \right) + 3\\6 = 2\left( 3 \right) + 0\end{array}\)

So, \(\gcd \left( {111,\,201} \right) = 3\)

04

Finding \(\gcd \left( {1001,\,1331} \right)\)

(c)

By, using Euclid’s Algorithm,

\(\begin{array}{c}1331 = 1\left( {1001} \right) + 330\\1001 = 3\left( {330} \right) + 11\\330 = 30\left( {11} \right) + 0\end{array}\)

So, \(\gcd \left( {1001,\,1331} \right) = 11\)

05

Finding \(\gcd \left( {12345,\,54321} \right)\)

(d)

By, using Euclid’s Algorithm,

\(\begin{array}{c}54321 = 4\left( {12345} \right) + 4941\\12345 = 2\left( {4941} \right) + 2463\\4941 = 2\left( {2463} \right) + 15\\2463 = 164\left( {15} \right) + 3\\15 = 5\left( 3 \right) + 0\end{array}\)

So, \(\gcd \left( {12345,\,54321} \right) = 3\)

06

Finding \(\gcd \left( {1000,\,5040} \right)\)

(e)

By, using Euclid’s Algorithm,

\(\begin{array}{c}5040 = 5\left( {1000} \right) + 40\\1000 = 250\left( {40} \right) + 0\end{array}\)

So, \(\gcd \left( {1000,\,5040} \right) = 40\)

07

Finding \(\gcd \left( {9888,\,6060} \right)\)

(f)

Here,\(\gcd \left( {9888,\,6060} \right) = \gcd \left( {6060,\,9888} \right)\)

By, using Euclid’s Algorithm,

\(\begin{array}{c}9888 = 1\left( {6060} \right) + 3828\\6060 = 1\left( {3828} \right) + 2232\\3828 = 1\left( {2232} \right) + 1596\\2232 = 1\left( {1596} \right) + 636\\1596 = 2\left( {636} \right) + 324\\636 = 1\left( {324} \right) + 312\\324 = 1\left( {312} \right) + 12\\312 = 26\left( {12} \right) + 0\end{array}\)

So, \(\gcd \left( {9888,\,6060} \right) = 12\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free