Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use Euclidean algorithm to find

  1. \(\gcd \left( {1,\,5} \right)\)
  2. \(\gcd \left( {100,\,101} \right)\)
  3. \(\gcd \left( {123,\,277} \right)\)
  4. \(\gcd \left( {1529,\,14039} \right)\)
  5. \(\gcd \left( {1529,\,14038} \right)\)
  6. \(\gcd \left( {11111,\,111111} \right)\)

Short Answer

Expert verified
  1. \(\gcd \left( {1,\,5} \right) = 1\)
  2. \(\gcd \left( {100,\,101} \right) = 1\)
  3. \(\gcd \left( {123,\,277} \right) = 1\)
  4. \(\gcd \left( {1529,\,14039} \right) = 139\)
  5. \(\gcd \left( {1529,\,14038} \right) = 1\)
  6. \(\gcd \left( {11111,\,111111} \right) = 1\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Euclidean Algorithm

Which says that,given integers\(b\)and\(c\)we make repeated application of the division algorithm theorem to obtain a series of equations from

\(\begin{array}{c}a = bq + r\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \le r < b\\b = c{q_1} + {r_1}\,\,\,\,\,\,\,\,\,\,\,\,\,0 \le {r_1} < c\\c = {r_1}{q_2} + {r_2}\,\,\,\,\,\,\,\,\,\,\,\,0 \le {r_2} < {r_1}\\{r_1} = {r_2}{q_3} + {r_3}\,\,\,\,\,\,\,\,\,\,\,\,0 \le {r_3} < {r_2}\\.\\.\\{r_{n - 2}} = {r_{n - 1}}{q_n} + {r_n}\,\,\,\,\,\,\,\,\,\,\,\,0 \le {r_n} < {r_{n - 1}}\\{r_{n - 1}} = {r_n}{q_{n + 1}} + 0\end{array}\)

The greatest common divisor of\(b\)and\(c\)is\({r_n}\)

02

Finding \(\gcd \left( {1,\,5} \right)\)

(a)

Here, we can see that 1 and 5 are relatively prime.

So, \(\gcd \left( {1,\,5} \right) = 1\)

03

Finding \(\gcd \left( {100,\,101} \right)\)

(b)

By, using Euclid’s Algorithm,

\(\begin{array}{c}101 = 1\left( {100} \right) + 1\\100 = 100\left( 1 \right) + 0\end{array}\)

So, \(\gcd \left( {100,\,101} \right) = 1\)

04

Finding \(\gcd \left( {123,\,277} \right)\)

(c)

By, using Euclid’s Algorithm,

\(\begin{array}{c}277 = 2\left( {123} \right) + 31\\123 = 3\left( {31} \right) + 30\\21 = 1\left( {30} \right) + 1\\30 = 30\left( 1 \right) + 0\end{array}\)

So, \(\gcd \left( {123,\,277} \right) = 1\)

05

Finding \(\gcd \left( {1529,\,14039} \right)\)

(d)

By, using Euclid’s Algorithm,

\(\begin{array}{c}14039 = 9\left( {1529} \right) + 278\\1529 = 5\left( {278} \right) + 139\\278 = 2\left( {139} \right) + 0\end{array}\)

So, \(\gcd \left( {1529,\,14039} \right) = 139\)

06

Finding \(\gcd \left( {1529,\,14038} \right)\)

(e)

By, using Euclid’s Algorithm,

\(\begin{array}{c}14038 = 9\left( {1529} \right) + 277\\1529 = 5\left( {277} \right) + 144\\277 = 1\left( {144} \right) + 133\\144 = 1\left( {133} \right) + 11\\133 = 12\left( {11} \right) + 1\\11 = 11\left( 1 \right) + 0\end{array}\)

So, \(\gcd \left( {1529,\,14038} \right) = 1\)

07

Finding \(\gcd \left( {11111,\,111111} \right)\)

(f)

By, using Euclid’s Algorithm,

\(\begin{array}{c}111111 = 10\left( {11111} \right) + 1\\11111 = 11111\left( 1 \right) + 0\end{array}\)

So, \(\gcd \left( {11111,\,111111} \right) = 1\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free