Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that \(a\)and\(b\)are positive integers, then\(ab = \gcd \left( {a,\,b} \right) \cdot lcm\left( {a,\,b} \right)\). (Hint: Use the prime factorizations of\(a\)and\(b\)also the formula for\(\gcd \left( {a,\,b} \right)\)and\(lcm\left( {a,\,b} \right)\)in terms of this factorization.)

Short Answer

Expert verified

It is proved that \(lcm\left( {a,\,b} \right) \cdot \gcd \left( {a,\,b} \right) = ab\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Greatest common divisor

Let\(a\)and\(b\)be given integers with at least one of them is not zero. The greatest common divisor of\(a\)and\(b\)is denoted by\(\gcd \left( {a,\,b} \right)\)is the positive number\(d\)satisfying,

  1. \({d \mathord{\left/
  2. {\vphantom {d a}} \right.
  3. \kern-\nulldelimiterspace} a}{\rm{ and }}{d \mathord{\left/
  4. {\vphantom {d b}} \right.
  5. \kern-\nulldelimiterspace} b}\)
  6. If\({c \mathord{\left/
  7. {\vphantom {c a}} \right.
  8. \kern-\nulldelimiterspace} a}{\rm{ and }}{c \mathord{\left/
  9. {\vphantom {c b}} \right.
  10. \kern-\nulldelimiterspace} b}\)then\(c \le d\).
02

Proving that \(ab = \gcd \left( {a,\,b} \right) \cdot lcm\left( {a,\,b} \right)\)

Let\(d = \gcd \left( {a,\,b} \right)\)

So by definition of greatest common divisor we have,

\(a = dx\)for some \(x\)

\(b = dy\)for some \(y\)

Here, \(x\) and \(y\) are co-primes because \(\gcd \left( {x,\,y} \right) = 1\).

Now, we know that

\(lcm\left( {a,\,b} \right)\)is divisible by \(a = dx\)

\(lcm\left( {a,\,b} \right)\)is divisible by \(b = dy\).

So, \(lcm\left( {a,\,b} \right) = dxy\)

\(\begin{array}{l}lcm\left( {a,\,b} \right) \cdot \gcd \left( {a,\,b} \right) = dxy \cdot \gcd \left( {a,\,b} \right)\\lcm\left( {a,\,b} \right) \cdot \gcd \left( {a,\,b} \right) = dxy \cdot d\\lcm\left( {a,\,b} \right) \cdot \gcd \left( {a,\,b} \right) = dx \cdot dy\end{array}\)

So, we get \(lcm\left( {a,\,b} \right) \cdot \gcd \left( {a,\,b} \right) = ab\)

Hence proved.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free