Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find each of these values.

a)\(\left( {{\rm{ - 133 }}{\bf{mod}}{\rm{ 23}} + {\bf{2}}61{\rm{ }}{\bf{mod}}{\rm{ 23}}} \right){\rm{ }}{\bf{mod}}{\rm{ 23}}\)

b)\(\left( {45{\bf{7}}{\rm{ }}{\bf{mod}}{\rm{ 23}} \cdot 182{\rm{ }}{\bf{mod}}\;23} \right){\rm{ }}{\bf{mod}}{\rm{ 23}}\)

Short Answer

Expert verified
  1. 13
  2. 6

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept of Division Algorithm 

  • Let \(a\) be an integer and \(d\) be a positive integer.
  • Then there are unique Integers \(q\) and \(T\)with \(0 \le \;r < d\)such that \(a = dq + r\).
  • \(q\)is called the quotient and \(T\)is called the remainder.
  • \(\begin{array}{*{20}{l}}{q = a{\rm{ div }}d}\\{\;r = a{\rm{ mod }}d}\end{array}\)
02

Step 2(a): Finding \(\left( {{\rm{ - 133 }}{\bf{mod}}{\rm{ 23}} + {\bf{2}}61{\rm{ }}{\bf{mod}}{\rm{ 23}}} \right){\rm{ }}{\bf{mod}}{\rm{ 23}}\)

\(\left( { - 133\;{\bf{mod}}\;\;23{\rm{ }} + {\rm{ }}261\;\;{\bf{mod}}\;\;23} \right)\;{\bf{mod}}\;\;23\)

Let us first determine \( - 133\;\;{\bf{mod}}\;\;23\)

\(\begin{array}{c}a = - 133\\ = - 138 + 5{\rm{ }}\\ = \left( { - 6} \right).23 + 5\\ = \left( { - 6} \right)d + 5\end{array}\)

The remainder is the constant in the final expression: \( - 133\;\;{\bf{mod}}\;\;23 = {\rm{ }}5\)

Let us first determine \(261\;\;{\bf{mod}}\;\;23\)

\(\begin{array}{c}a = {\rm{ }}261\\ = {\rm{ }}253 + 8\\ = 11 \cdot 23 + 8\\ = 11d + 8\end{array}\)

The remainder is the constant in the final expression: \(261\;\;{\bf{mod}}\;\;23 = {\rm{ }}8\)

Let us fill in the two found values in the given expression:

\(\begin{array}{c}\left( { - 133\;\;{\bf{mod}}\;\;23 + {\rm{ }}261\;{\bf{mod}}\;23} \right)\;{\bf{mod}}\;\;23\\ = \left( {5 + 8} \right)\;{\bf{mod}}\;23\\ = 13\;{\bf{mod}}\;23\\ = 13\end{array}\)

Hence the solution is 13.

03

Step 3(b): Finding \(\left( {45{\bf{7}}{\rm{ }}{\bf{mod}}{\rm{ 23}} \cdot 182{\rm{ }}{\bf{mod}}\;23} \right){\rm{ }}{\bf{mod}}{\rm{ 23}}\)

\(\left( {457\;{\bf{mod}}\;23 \cdot 82\;\;{\bf{mod}}\;\;23} \right)\;{\bf{mod}}\;\;23\)

Let us first determine \( - 133\;\;{\bf{mod}}\;\;23\)

\(\begin{array}{c}a = {\rm{ }}457\\ = 437 + 20{\rm{ }}\\ = 19 \cdot 23 + 20\\ = 19d + 20\end{array}\)

\(457\;\;{\bf{mod}}\;\;23 = {\rm{ }}20\)

The reminder is the constant in the final expression: Let us first determine \(182\;\;{\bf{mod}}\;\;23\)

\(\begin{array}{c}a = {\rm{ }}182\\ = {\rm{ }}161 + 21\\ = 7 \cdot 23 + 21\\ = 7d + 21\end{array}\)

The remainder is the constant in the final expression: \(182\;\;{\bf{mod}}\;\;23 = 21\)

Let us fill in the two found values in the given expression:

\(\begin{array}{c}\left( {457\;{\bf{mod}}\;\;23 \cdot 182\;{\bf{mod}}\;23} \right)\;{\bf{mod}}\;23\\ = \left( {20 \cdot 21} \right)\;{\bf{mod}}\;23\\ = 420\;{\bf{mod}}\;23\end{array}\)

Let us next determine \(420\;{\bf{mod}}\;23\)

\(\begin{array}{c}a = {\rm{ }}420\\ = 414 + 6\\ = 18 \cdot 23 + 6\\ = 18d + 6\end{array}\)

The remainder is the constant in the final expression:

\(420\;{\bf{mod}}\;23{\rm{ }} = 6\)

Hence the solution is 6.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free