Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find each of these values.

a) \(\left( {{\bf{177}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}} + {\bf{270}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}}} \right){\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}}\)

b) \(\left( {{\bf{177}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}} \cdot {\bf{270}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}}} \right){\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}}\)

Short Answer

Expert verified
  1. 13
  2. 19

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept of Division Algorithm 

  • Let \(a\) be an integer and \(d\) be a positive integer.
  • Then there are unique Integers \(q\) and \(T\)with \(0 \le \;r < d\)such that \(a = dq + r\).
  • \(q\)is called the quotient and \(T\)is called the remainder.
  • \(\begin{array}{*{20}{l}}{q = a{\rm{ div }}d}\\{\;r = a{\rm{ mod }}d}\end{array}\)
02

Step 2(a): Finding \(\left( {{\bf{177}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}} + {\bf{270}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}}} \right){\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}}\)

\(\left( {177\;{\bf{mod}}\;\;31 + 270\;\;{\bf{mod}}\;31} \right)\;{\bf{mod}}\;\;31\)

Let us first determine \(177\;\;{\bf{mod}}\;\;31\)

\(\begin{array}{c}a = 17\\ = 155 + 22\\ = 5 \cdot 31 + 22\\ = 5d + 22\end{array}\)

The remainder is the constant in the final expression: \(177\;\;{\bf{mod}}\;\;31 = 22\)

Let us first determine \(270\;{\bf{mod}}\;\;31\)

\(\begin{array}{c}a = 270\\ = 248 + 22\\ = 8 \cdot 31 + 22\\ = 8d + 22\end{array}\)

The remainder is the constant in the final expression: \(270\;\;{\bf{mod}}\;\;31 = 22\)

Let us fill in the two found values in the given expression:

\(\begin{array}{l}\left( {177\;{\bf{mod}}\;\;31 + {\rm{ }}270\;{\bf{mod}}\;31} \right)\;{\bf{mod}}\;31\\ = \left( {22 + 22} \right)\;{\bf{mod}}\;31\\ = 44\;{\bf{mod}}\;31\\ = 44 - 31\;{\bf{mod}}\;31\\ = 13\;{\bf{mod}}\;3\\ = 13\end{array}\)

Hence the solution is 13.

03

Step 3(b): Finding \(\left( {{\bf{177}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}} \cdot {\bf{270}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}}} \right){\rm{ }}{\bf{mod}}{\rm{ }}{\bf{31}}\)

\(\left( {177\;{\bf{mod}}\;\;31 \cdot 270\;\;{\bf{mod}}\;31} \right)\;{\bf{mod}}\;\;31\)

Let us first determine \(177\;\;{\bf{mod}}\;\;31\)

\(\begin{array}{c}a = {\rm{ }}177\\ = 155 + 22\\ = 5 \cdot 31 + 22\\ = 5d + 22\end{array}\)

The remainder is the constant in the final expression: \(177\;\;{\bf{mod}}\;\;31 = 22\)

Let us first determine \(270\;\;{\bf{mod}}\;\;31\)

\(\begin{array}{c}a = 270\\ = {\rm{ }}248 + 22\\ = 8 \cdot 31 + 22\\ = 8d + 22\end{array}\)

The remainder is the constant in the final expression: \(270\;\;{\bf{mod}}\;\;31 \equiv 22\)

Let us fill in the two found values in the given expression:

\(\left( {177\;{\bf{mod}}\;\;31 \cdot 270\;\;{\bf{mod}}\;31} \right)\;{\bf{mod}}\;\;31\)

\(\begin{array}{l} = \left( {22 \cdot 22} \right)\;{\bf{mod}}\;31\\ = 484\;{\bf{mod}}\;31\end{array}\)

Let us next determine \(484\;{\bf{mod}}\;31\)

\(\begin{array}{c}a = {\rm{ }}484\\ = 465 + 19\\ = 15 \cdot 31 + 19\\ = 15d + 19\end{array}\)

The remainder is the constant in the final expression:

\(484\;{\bf{mod}}\;31 = 19\)

Hence the solution is 19.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free