Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Decide whether each of these integers is congruent to 5 modulo 17.

a) 80

b) 103

c) -29

d) -122

Short Answer

Expert verified
  1. 80 is not congruent to \(5\;mod{\rm{ 1}}7\)
  2. 103 is not congruent to \(5\;mod{\rm{ 1}}7\)
  3. -29 is congruent to \(5\;mod{\rm{ 1}}7\)
  4. -122 is not congruent to \(5\;mod{\rm{ 1}}7\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept of Division Algorithm 

  • Let \(a\) be an integer and \(d\) be a positive integer.
  • Then there are unique Integers \(q\) and \(T\)with \(0 \le \;r < d\)such that \(a = dq + r\).
  • \(q\)is called the quotient and \(T\)is called the remainder.
  • \(\begin{array}{*{20}{l}}{q = a{\rm{ div }}d}\\{\;r = a{\rm{ mod }}d}\end{array}\)
02

Step 2(a): Deciding whether the integer 80 is congruent to 5 modulo 17

\(5\;mod{\rm{ 1}}7\)

Since 80 is larger than 5, we should be able to obtain 80 by consecutively adding

17 to 5 if \(80 \equiv 5\;mod{\rm{ 1}}7\)

\(5\;mod{\rm{ 1}}7\)

\(\begin{array}{c} \equiv 5{\rm{ }} + 17\;{\bf{mod}}\;17\\\; \equiv 22\;{\bf{mod}}{\rm{ }}{\bf{1}}7\;\\ \equiv 22{\rm{ }} + 17\;{\bf{mod}}{\rm{ }}{\bf{1}}7\\ \equiv \;39\;{\bf{mod}}\;17\end{array}\)

\(\begin{array}{c} \equiv 39 + 17\;{\bf{mod}}\;17\\ \equiv \;56\;{\bf{mod}}\;17\\ \equiv \;56 + 7\;{\bf{mod}}\;17\\\; \equiv 73\;{\bf{mod}}\;17\;\\ \equiv 73 + 17\;\;{\bf{mod}}\;17\\ \equiv \;90\;{\bf{mod}}\;17\end{array}\)

We then note that \(5\;mod{\rm{ 1}}7\)is equivalent with 73 and 90. \(5\;mod{\rm{ 1}}7\)is then not

equivalent with 80, since 73<80<90.

Note:\(80\;\,\bmod \;\,17 \equiv 12\,\;\bmod \;\,17\)

Hence 80 is not congruent to 5 modulo 17

03

Step 3(b): Deciding whether the integer 103 is congruent to 5 modulo 17

\(5\;mod{\rm{ 1}}7\)

Since 103 is larger than 5, we should be able to obtain 103 by consecutively adding

17 to 5 if \(103 \equiv 5\;mod{\rm{ 1}}7\)

\(5\;mod{\rm{ 1}}7\)

\(\begin{array}{c} \equiv 5 + 17\;{\bf{mod}}\;17\;\\ \equiv 22\;{\bf{mod}}{\rm{ }}{\bf{1}}7\;\\ \equiv 22{\rm{ }} + 17\;{\bf{mod}}{\rm{ }}{\bf{1}}7\;\\ \equiv 39\;{\bf{mod}}\;17\end{array}\)

\(\begin{array}{c} \equiv 39 + {\rm{ }}17\;{\bf{mod}}\;17\;\\ \equiv 56\;{\bf{mod}}\;17\;\\ \equiv 56 + 7\;{\bf{mod}}\;17\\\; \equiv 73\;{\bf{mod}}\;17\end{array}\)

\(\begin{array}{c} \equiv 73 + 17\;\;{\bf{mod}}\;17\\ \equiv \;90\;{\bf{mod}}\;17\\ \equiv \;90 + 17\;\;{\bf{mod}}\;17\\\; \equiv 107\;{\bf{mod}}\;17\end{array}\)

We then note that \(5\;mod{\rm{ 1}}7\)is equivalent with 73 and 90. \(5\;mod{\rm{ 1}}7\)is then not

equivalent with 80, since 73<80<90.

Note: \(103\,\;\bmod \,\;17 \equiv 1\,\;\bmod \;\,17\)

Hence 103 is not congruent to 5 modulo 17

04

Step 4(c): Deciding whether the integer -29 is congruent to 5 modulo 17

\(5\;mod{\rm{ 1}}7\)

Since -29 is smaller than 5, we should be able to obtain -29 by consecutively

subtracting 17 from 5 if \( - 29 \equiv 5\;mod{\rm{ 1}}7\).

\(5\;mod{\rm{ 1}}7\)

\(\begin{array}{c} \equiv 5 - 17\;{\bf{mod}}\;17\\\; \equiv - 12\;{\bf{mod}}\;17\\ \equiv \; - 12 - 7\;{\bf{mod}}\;17\;\\ \equiv - 29\;{\bf{mod}}\;17\;\end{array}\)

note that: \( - 29{\rm{ }}mod{\rm{ }}17 \equiv \;\;5\;{\bf{mod}}\;17\)

Hence -29 is congruent to 5 modulo 17

05

Step 5(d): Deciding whether the integer -122 is congruent to 5 modulo 17

\(5\;mod{\rm{ 1}}7\)

Since -122 is smaller than 5, we should be able to obtain -122 by consecutively

subtracting 17 from 5 if \( - 122 \equiv 5\;mod{\rm{ 1}}7\)

\(5\;mod{\rm{ 1}}7\)

\(\begin{array}{c} \equiv 5 - 17\;{\bf{mod}}\;17\;\\ \equiv - 12\;{\bf{mod}}\;17\\\; \equiv - 12 - 7\;{\bf{mod}}\;17\\ \equiv \; - 29\;{\bf{mod}}\;17\end{array}\)

\(\begin{array}{c} \equiv - 29 - 17\;{\bf{mod}}\;17\;\\ \equiv - 46\;{\bf{mod}}\;17\;\\ \equiv - 46 - 17\;{\bf{mod}}\;17\;\\ \equiv - 63\;{\bf{mod}}\;17\end{array}\)

\(\begin{array}{c} \equiv - 63 + 17\;{\bf{mod}}\;17\;\\ \equiv - 80\;{\bf{mod}}\;17\;\\ \equiv - 80 + 17\;{\bf{mod}}\;17\\ \equiv \; - 97\;{\bf{mod}}\;17\end{array}\)

\(\begin{array}{c} \equiv - 97 + 17\;{\bf{mod}}\;17\\ \equiv \; - 114\;{\bf{mod}}\;17\\ \equiv \; - 114 - 7\;{\bf{mod}}\;17\\ \equiv \; - 131\;\;{\bf{mod}}\;17\;\end{array}\)

We then note that \(5\;mod{\rm{ 1}}7\)is equivalent with -114 and -131. \(5\;mod{\rm{ 1}}7\)is then not

equivalent with -122, since -131<-122<-114.

Note: \( - 122\,\;\bmod \;\,17 \equiv 14\,\;\bmod \,\;17\)

Hence -122 is congruent to 5 modulo 17

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free