Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use Algorithm 5 to find 1231001mod101

Short Answer

Expert verified

1231001mod101=22

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1

Given

1231001mod101

Let us first determine the binary expansion of 1001.

1001=11    111010012

a1then represents the ith digit in the binary expansion of 1001

a0=a1=a4=a6=a7=a8=a9=a10=1a2=a3=a5=0

Initially x is set to 1 and power is set to 123 mod 101

role="math" localid="1668515145493" x=1power=123mod101=22

02

Step 2

When ai=1thenxis first multiplied by the power and reduced modulo 101

Then on each iteration the power is multiplied by itself and reduced modulo 101.

localid="1668515953434" i=0Sincea0=1x=122mod101=22mod101=22power=222mod101=484mod101=80i=1Sincea1=1:x=22power=802mod101=6400mod101=37i=2Sincea2=0:x=22power=372mod101=139mod101=56i=3Sincea3=1:x=2256mod101=1232mod101=20power=562mod101=3136mod101=5i=4Sincea4=0x=20power=52mod101=25mod101=25i=5Sincea5=1:x=2025mod101=500mod101=96power=252mod101=100mod101=19i=6sincea6=1:x=9619mod101=1824mod101=6power=192mod101=361mod101=58

03

Step 3

i=7Sincea7=1:x=658mod101=348mod101=45power=582mod101=3364mod101=31i=8Sincea8=1:x=4531mod101=1395mod101=82power=312mod101=961mod101=52i=9sincea0=1:x=9.9mod99=81mod99=81power=92mod99=81mod99=81i=10Sincea10=1:x=8252mod101=4264mod101=22power=522mod101=2704mod101=78returnx=22

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free