Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Decide whether each of these integers is congruent to 3 modulo 7.

a) 37

b) 66

c) -17

d) -67

Short Answer

Expert verified
  1. 37 is not congruent to \(3{\rm{ }}mod{\rm{ }}7\)
  2. 66 is congruent to \(3{\rm{ }}mod{\rm{ }}7\)
  3. -17 is not congruent to \(3{\rm{ }}mod{\rm{ }}7\)
  4. -67 is congruent to \(3{\rm{ }}mod{\rm{ }}7\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept of Division Algorithm 

  • Let \(a\) be an integer and \(d\) be a positive integer.
  • Then there are unique Integers \(q\) and \(T\)with \(0 \le \;r < d\)such that \(a = dq + r\).
  • \(q\)is called the quotient and \(T\)is called the remainder.
  • \(\begin{array}{*{20}{l}}{q = a{\rm{ div }}d}\\{\;r = a{\rm{ mod }}d}\end{array}\)
02

Step 2(a): Deciding whether the integer 37 is congruent to 3 modulo 7

\(3{\rm{ }}mod{\rm{ }}7\)

Since 37 is larger than 3, we should be able to obtain 37 by consecutively adding

7 to 3 if \(37 \equiv 3\,\;\bmod \,\;7\)

\(\begin{array}{c}3{\rm{ }}mod{\rm{ }}7\\ \equiv 3 + 7\,\;\bmod \;\,7\\ \equiv 10\;\,\bmod \,\;7\\ \equiv 10 + 7\,\;\bmod \,\;7\\ \equiv 17\;\,\bmod \,\;7\\ \equiv 17 + 7\,\;\bmod \;\,7\end{array}\)

\(\begin{array}{c} \equiv 24\,\;\bmod \;\,7\\ \equiv 24 + 7\,\;\bmod \;\,7\\ \equiv 31\;\,\bmod \,\;7\\ \equiv 31 + 7\;\,\bmod \,\;7\\ \equiv 38\;\,\bmod \,\;7\end{array}\)

We then note that \(3{\rm{ }}mod{\rm{ }}7\)is equivalent with 31 and 38. \(3{\rm{ }}mod{\rm{ }}7\) is then not equivalent with 37, since 31<37<38.

Note: \(37\,\;\bmod \,\;7 \equiv 2\,\;\bmod \,\;7\)

Hence 37 is not congruent to \(3{\rm{ }}mod{\rm{ }}7\)

03

Step 3(b): Deciding whether the integer 66 is congruent to 3 modulo 7

\(3{\rm{ }}mod{\rm{ }}7\)

Since 66 is larger than 3, we should be able to obtain 66 by consecutively adding

7 to 3 if \(66 \equiv 3\,\;\bmod \,\;7\)

\(3\,\;\bmod \,\;7\)

\(\begin{array}{l}\; \equiv 3 + 7\;{\bf{mod}}\;7\\ \equiv \;10\;{\bf{mod}}\;7\\ \equiv \;10 + 7\;{\bf{mod}}\;7\;\\ \equiv 17\;{\bf{mod}}\;7\;\end{array}\)

\(\begin{array}{l} \equiv 17 + 7\;{\bf{mod}}\;7\\ \equiv \;24\;{\bf{mod}}\;7\;\\ \equiv 24 + 7\;{\bf{mod}}\;7\\\; \equiv 31\;{\bf{mod}}\;7\end{array}\)

\(\begin{array}{l} \equiv 31 + 7\;\;{\bf{mod}}\;7\;\\ \equiv 38\;{\bf{mod}}\;7\\ \equiv 38 + 7\;\;{\bf{mod}}\;7\;\\ \equiv 45\;\;{\bf{mod}}\;7\;\end{array}\)

\(\begin{array}{l} \equiv 45 + 7\;\;{\bf{mod}}\;7\\\; \equiv 52\;{\bf{mod}}\;7\;\\ \equiv 52 + 7\;\;{\bf{mod}}\;7\;\\ \equiv 59\;\;{\bf{mod}}\;7\;\\ \equiv 59 + 7\;{\bf{mod}}\;7\\\; \equiv 66\;{\bf{mod}}\;7\end{array}\)

Hence 66 is congruent to\(3{\rm{ }}mod{\rm{ }}7\)

04

Step 4(c): Deciding whether the integer -17 is congruent to 3 modulo 7

\(3{\rm{ }}mod{\rm{ }}7\)

Since -17 is smaller than 3, we should be able to obtain -17 by consecutivelysubtracting 7 from 3 if \( - 17 \equiv 3\,\;\bmod \,\;7\)

\(3{\rm{ }}mod{\rm{ }}7\)

\(\begin{array}{l} \equiv 3 - 7\;{\bf{mod}}\;7\\\; \equiv - 4\;{\bf{mod}}\;7\;\\ \equiv - 4 - 7\;{\bf{mod}}\;7\\ \equiv \; - 11\;{\bf{mod}}\;7\\ \equiv \; - 11 - {\rm{ }}7\;{\bf{mod}}\;7\;\\ \equiv - 18\;{\bf{mod}}\;7\end{array}\)

We then note that \(3{\rm{ }}mod{\rm{ }}7\)is equivalent with -11 and -18. \(3{\rm{ }}mod{\rm{ }}7\) is then not equivalent with -17, since -18<-17<-11.

Note: \( - 17{\rm{ }}mod{\rm{ }}7\; \equiv 4\;{\bf{mod}}\;7\)

Hence -17 is not congruent to\(3{\rm{ }}mod{\rm{ }}7\)

05

Step 5(d): Deciding whether the integer -67 is congruent to 3 modulo 7

\(3{\rm{ }}mod{\rm{ }}7\)

Since -67 is smaller than 3, we should be able to obtain -67 by consecutively subtracting 7 from 3 if \( - 67\; \equiv 3\;{\bf{mod}}\;7.\)

\(3{\rm{ }}mod{\rm{ }}7\)

\(\begin{array}{c} \equiv 3{\rm{ }} - 7\;{\bf{mod}}\;7\\\; \equiv - 4\;{\bf{mod}}\;7\\\; \equiv - 4 - 7\;{\bf{mod}}\;7\\ \equiv \; - 11\;{\bf{mod}}\;7\end{array}\)

\(\begin{array}{c} \equiv - 11 - {\rm{ }}7\;{\bf{mod}}\;7\\ \equiv \; - 18\;{\bf{mod}}\;7\\ \equiv \; - 18 - {\rm{ }}7\;{\bf{mod}}\;7\;\\ \equiv - 25\;{\bf{mod}}\;7\end{array}\)

\(\begin{array}{c} \equiv - 25 - {\rm{ }}7\;{\bf{mod}}\;7\\\; \equiv - 32\;{\bf{mod}}\;7\\\; \equiv - 32 - 7\;{\bf{mod}}\;7\\ \equiv \; - 39\;{\bf{mod}}\;7\end{array}\)

\(\begin{array}{c} \equiv - 39 - {\rm{ }}7\;{\bf{mod}}\;7\\\; \equiv - 46\;{\bf{mod}}\;7\\ \equiv \; - 46 - {\rm{ }}7\;{\bf{mod}}\;7\;\\ \equiv - 53\;{\bf{mod}}\;7\end{array}\)

\(\begin{array}{c} \equiv - 53 - {\rm{ }}7\;{\bf{mod}}\;7\\\; \equiv - 60\;{\bf{mod}}\;7\;\\ \equiv - 60 - {\rm{ }}7\;{\bf{mod}}\;7\;\\ \equiv - 67\;{\bf{mod}}\;7\end{array}\)

Hence -67 is congruent to\(3{\rm{ }}mod{\rm{ }}7\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free