Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use Algorithm 5 to find 32003mod99

Short Answer

Expert verified

32003mod99=27

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1

Given

32003mod99

Let us first determine the binary expansion of 2003.

2003=(11111010011)2

a1then represents the iith digit in the binary expansion of 2003

a0=a1=a4=a6=a7=a8=a9=a10=1a2=a3=a5=0

Initially x is set to 1 and power is set to 3mod99

x=1power=3mod99=3

02

Step 2

When ai=1 then x is first multiplied by the power and reduced modulo 99

Then on each iteration the power is multiplied by itself and reduced modulo 99.

i=0Sincea0=1x=1.3mod99=3mod99=3power=32mod99=9mod99=9i=1Sincea1=1:x=3.9mod99=27mod99=27power=92mod99=81mod99=81i=2Sincea2=0:x=27power=812mod99=6561mod99=27

role="math" localid="1668517890384" x=27power=272mod99=729mod99=36i=4Sincea4=1:x=2736mod99=972mod99=81power=362mod99=1296mod99=9i=5Sincea5=0x=81power=92mod99=81mod99=81i=6sincea6=1:x=8181mod99=6561mod99=27power=812mod99=6561mod99=27

03

Step 3

i=7Sincea7=1:x=2727mod99=729mod99=36power=272mod99=729mod99=36i=8Sincea8=1:x=3636mod99=1296mod99=9power=362mod99=1296mod99=9i=9sincea9=1:returnxx=27power=812mod99=6561mod99=27power=92mod99=81mod99=81i=10Sincea10=1:x=8181mod99=6561mod99=27mod99=81

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free