Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the integer a such that

a) \({\bf{a}} = {\bf{43}}\left( {{\bf{mod}}{\rm{ }}{\bf{23}}} \right)\) and \( - 22 \le a \le 0\).

b) \({\bf{a}} = {\bf{17}}\left( {{\bf{mod}}{\rm{ }}{\bf{29}}} \right)\) and \( - 14 \le a \le 14\).

c) \({\bf{a}} = - {\bf{11}}\;\left( {{\bf{mod}}{\rm{ }}{\bf{21}}} \right)\) and \(90 \le a \le 110\).

Short Answer

Expert verified
  1. Since -3 is between -22 and 0:

\(a = - 3\)

b. Since -12 is between -14 and 14:

\(a = - 12\)

c. Since 94 is between 90 and 110:

\(a = 94\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept of Division Algorithm 

  • Let \(a\) be an integer and \(d\) be a positive integer.
  • Then there are unique Integers \(q\) and \(T\)with \(0 \le \;r < d\)such that \(a = dq + r\).
  • \(q\)is called the quotient and \(T\)is called the remainder.
  • \(\begin{array}{*{20}{l}}{q = a{\rm{ div }}d}\\{\;r = a{\rm{ mod }}d}\end{array}\)
02

Step 2(a): Finding the integer a when \({\bf{a}} = {\bf{43}}\left( {{\bf{mod}}{\rm{ }}{\bf{23}}} \right)\) and \( - 22 \le a \le 0\).

\(a \equiv 43\;(\,\bmod \;\,23)\)

We can find \(a\) such that \( - 22 \le a \le 0\) by consecutively subtracting 23 from 43 until

we obtain a value between -22 and 0.

\(\begin{array}{c}a \equiv 43\;(\,\bmod \,23)\;\;\;\;\\\; \equiv 43 - 23\;(\,\bmod \;\,23)\\ \equiv 20\;(\,\bmod \,\;23)\\ \equiv 20 - 23\;(\,\bmod \,23)\\ \equiv - 3\;(\,\bmod \,\;23)\end{array}\)

Since -3 is between -22 and 0:

\(a = - 3\)

Hence the integer a is -3

03

Step 3(b): Finding the integer a when \({\bf{a}} = {\bf{17}}\left( {{\bf{mod}}{\rm{ }}{\bf{29}}} \right)\) and \( - 14 \le a \le 14\).

\(a \equiv 17\;(\,\bmod \,\;29)\)

We can a find \(a\) such that \( - 14 \le a \le 14\)by consecutively subtracting 29 from 17 until we obtain a value between -14 and 14

\(\begin{array}{c}a \equiv 17\;(\,\bmod \,\;29)\\ \equiv 17 - 29\;(\,\bmod \,\;29)\\ \equiv - 12\;(\,\bmod \;\,29)\end{array}\)

Since -12 is between -14 and 14:

\(a = - 12\)

Hence the integer a is -12.

04

Step 4(c): Finding the integer a when \({\bf{a}} =  - {\bf{11}}\;\left( {{\bf{mod}}{\rm{ }}{\bf{21}}} \right)\) and \(90 \le a \le 110\).

\(a \equiv - 11\;(\,\bmod \,\;21)\)

We can a find \(a\) such that \(90 \le a \le 110\)by consecutively subtracting 21 from -11 until we obtain a value between 90 and 110

\(\begin{array}{c}a \equiv - 11\;(\,\bmod \;\,21)\\ \equiv - 11 + 21\;(\,\bmod \;\,21)\\ \equiv 10\;(\,\bmod \,\;21)\\ \equiv 10 + 21\;(\,\bmod \;\,21)\end{array}\)

\(\begin{array}{c} \equiv 31\;(\,\bmod \,\;21)\\ \equiv 31 + 21\;(\,\bmod \;\,21)\\ \equiv 52\;(\,\bmod \,\;21)\\ \equiv 52 + 21\;(\,\bmod \,\;21)\end{array}\)

\(\begin{array}{c} \equiv 73\;(\,\bmod \,\;21)\\ \equiv 73 + 21\;(\,\bmod \,\;21)\\ \equiv 94\;(\,\bmod \;\,21)\end{array}\)

Since 94 is between 90 and 110:

\(a = 94\)

Hence the integer a is 94.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free