Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find \(a{\rm{ div}}\;m\) and \(a{\rm{ mod}}\;\;m\)when

\(\begin{array}{*{20}{l}}{{\bf{a}}){\rm{ }}{\bf{a}} = {\bf{228}},{\rm{ }}{\bf{m}} = {\bf{119}}.}\\{{\bf{b}}){\rm{ }}{\bf{a}} = {\bf{9009}},{\rm{ }}{\bf{m}} = {\bf{223}}.}\\{{\bf{c}}){\rm{ }}{\bf{a}} = - {\bf{10101}},{\rm{ }}{\bf{m}} = {\bf{333}}.}\\{{\bf{d}}){\rm{ }}{\bf{a}} = - {\bf{765432}},{\rm{ }}{\bf{m}} = {\bf{38271}}.}\end{array}\)

Short Answer

Expert verified

(a) \(\begin{array}{c}\;a\;{\rm{div\;}}\;m = 1\\a\;{\rm{mod}}\;\;m = {\rm{ 109}}\end{array}\)

(b)\(\begin{array}{c}a\;{\rm{div\;}}\;m = 40\\a\;{\rm{mod}}\;\;m = {\rm{ 89}}\end{array}\)

(c) \(\begin{array}{c}a\;{\rm{div\;}}\;m = - 31\\a\;{\rm{mod}}\;\;m = {\rm{ 222}}\end{array}\)

(d) \(\begin{array}{c}a\;{\rm{div\;}}\;m = - 21\\a\;{\rm{mod}}\;\;m = {\rm{ 38259}}\end{array}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept of Division Algorithm 

  • Let \(a\) be an integer and \(d\) be a positive integer.
  • Then there are unique Integers \(q\) and \(T\)with \(0 \le \;r < d\)such that \(a = dq + r\).
  • \(q\)is called the quotient and \(T\)is called the remainder.
  • \(\begin{array}{*{20}{l}}{q = a{\rm{ div }}d}\\{\;r = a{\rm{ mod }}d}\end{array}\)
02

Step 2(a): Finding a div m and a mod m when \({\bf{a}} = 228,{\rm{ }}{\bf{m}} = 119\)

\(\begin{array}{l}a = 228\\m = 119\end{array}\)

Let us determine the quotient and remainder

\(\begin{array}{c}a = 228\\ = 119 + 109\\ = 1 \cdot 119 + 109\\ = 1\;m + 109\end{array}\)

The quotient is then the coefficient of \(m \Rightarrow q = 1\)

The reminder is the constant: \(r = 109\;({\rm{with}}\;0 \le 109 < 119)\)

\(a\;{\rm{div}}\;m\)is then equal to the quotient and \(a\;\bmod \;m\) is equal to the reminder:

\(a\;{\rm{div}}\;m = 1\)

\(a\;\bmod \;m = 109\)

Hence the solution is

\(\begin{array}{c}\;a\;{\rm{div\;}}\;m = 1\\a\;{\rm{mod}}\;\;m = {\rm{ 109}}\end{array}\)

03

Step 3(b): Finding a div m and a mod m when \({\bf{a}} = 9009,{\rm{ }}{\bf{m}} = 223\)

\(\begin{array}{l}a = 9009\\m = 223\end{array}\)

Let us determine the quotient and remainder

\(\begin{array}{c}a = 9009\\ = 8920 + 89\\ = 40 \cdot 233 + 89\\ = 40\;m + 89\end{array}\)

The quotient is then the coefficient of \(m \Rightarrow q = 40\)

The reminder is the constant: \(r = 89\;({\rm{with}}\;0 \le 89 < 223)\)

\(a\;{\rm{div}}\;m\)is then equal to the quotient and \(a\;\bmod \;m\) is equal to the reminder:

\(a\;{\rm{div}}\;m = 40\)

\(a\;\bmod \;m = 89\)

Hence the solution is

\(\begin{array}{c}a\;{\rm{div\;}}\;m = 40\\a\;{\rm{mod}}\;\;m = {\rm{ 89}}\end{array}\)

04

Step 4(c): Finding a div m and a mod m when \({\bf{a}} =  - 10101,{\rm{ }}{\bf{m}} = 333\)

\(\begin{array}{l}a = - 10101\\d = 333\end{array}\)

Let us determine the quotient and remainder

\(\begin{array}{c}a = - 10101\\ = - 10323 + 222\\ = ( - 31) \cdot 333 + 222\\ = ( - 31)\;d + 222\end{array}\)

The quotient is then the coefficient of \(m \Rightarrow q = - 31\)

The reminder is the constant: \(r = 222\;({\rm{with}}\;0 \le 222 < 333)\)

\(a\;{\rm{div}}\;m\)is then equal to the quotient and \(a\;\bmod \;m\) is equal to the reminder:

\(a\;{\rm{div}}\;m = - 31\)

\(a\;\bmod \;m = 222\)

Hence the solution is

\(\begin{array}{c}a\;{\rm{div\;}}\;m = - 31\\a\;{\rm{mod}}\;\;m = {\rm{ 222}}\end{array}\)

05

Step 5(d): Finding a div m and a mod m when \({\bf{a}} =  - 765432,{\rm{ }}{\bf{m}} = 38271\)

\(\begin{array}{l}a = - 765432\\d = 38271\end{array}\)

Let us determine the quotient and remainder

\(\begin{array}{c}a = - 765432\\ = - 803691 + 38259\\ = ( - 21) \cdot 38271 + 38259\\ = ( - 21)\;d + 38259\end{array}\)

The quotient is then the coefficient of \(m \Rightarrow q = - 21\)

The reminder is the constant: \(r = 38259\;({\rm{with}}\;0 \le 38259 < 38271)\)

\(a\;{\rm{div}}\;m\)is then equal to the quotient and \(a\;\bmod \;m\) is equal to the reminder:

\(a\;{\rm{div}}\;m = - 21\)

\(a\;\bmod \;m = 38259\)

Hence the solution is

\(\begin{array}{c}a\;{\rm{div\;}}\;m = - 21\\a\;{\rm{mod}}\;\;m = {\rm{ 38259}}\end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free