Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a div m and a mod m when

a) \({\bf{a}} = - {\bf{111}},{\rm{ }}{\bf{m}} = {\bf{99}}\)

b) \({\bf{a}} = - 9999,{\rm{ }}{\bf{m}} = 101\)

c) \({\bf{a}} = 10299,{\rm{ }}{\bf{m}} = 999\)

d)\({\bf{a}} = {\bf{1}}23456,{\rm{ }}{\bf{m}} = 1001\)

Short Answer

Expert verified

(a) \(\begin{array}{c}\;a\;{\rm{div\;}}\;m = - 2\;\;\\a\;{\rm{mod}}\;\;m = {\rm{ }}87\end{array}\)

(b)\(\begin{array}{c}a\;{\rm{div\;}}\;m = - 99\\a\;{\rm{mod}}\;\;m = {\rm{ 0}}\end{array}\)

(c) \(\begin{array}{c}a\;{\rm{div\;}}\;m = 10\\a\;{\rm{mod}}\;\;m = {\rm{ 309}}\end{array}\)

(d) \(\begin{array}{c}a\;{\rm{div\;}}\;m = 123\\a\;{\rm{mod}}\;\;m = {\rm{ 333}}\end{array}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept of Division Algorithm 

  • Let \(a\) be an integer and \(d\) be a positive integer.
  • Then there are unique Integers \(q\) and \(T\)with \(0 \le \;r < d\)such that \(a = dq + r\).
  • \(q\)is called the quotient and \(T\)is called the remainder.
  • \(\begin{array}{*{20}{l}}{q = a{\rm{ div }}d}\\{\;r = a{\rm{ mod }}d}\end{array}\)
02

Step 2(a): Finding a div m and a mod m when \({\bf{a}} =  - {\bf{111}},{\rm{ }}{\bf{m}} = {\bf{99}}\)

\(\begin{array}{l}a = - 111\\d = 99\end{array}\)

Let us determine the quotient and remainder

\(\begin{array}{c}a = - 111\\ = - 198 + 87\\ = ( - 2) \cdot 99 + 87\\ = ( - 2)m + 87\end{array}\)

The quotient is then the coefficient of \(m \Rightarrow q = - 2\)

The remainder is the constant: \(r = 87\;({\rm{with}}\;0 \le 87 < 99)\)

\(a\;{\rm{div}}\;m\)is then equal to the quotient and \(a\;\bmod \;m\) is equal to the reminder:

\(a\;{\rm{div}}\;m = - 2\)

\(a\;\bmod \;m = 87\)

Hence the solution is

\(a\;{\rm{div}}\;m = - 2\)

\(a\;\bmod \;m = 87\)

03

Step 3(b): Finding a div m and a mod m when \({\bf{a}} =  - 9999,{\rm{ }}{\bf{m}} = 101\)

\(\begin{array}{l}a = - 9999\\d = 101\end{array}\)

Let us determine the quotient and remainder

\(\begin{array}{c}a = - 9999\\ = ( - 99) \cdot 101\\ = ( - 99) \cdot 101 + 0\\ = ( - 99)m + 0\end{array}\)

The quotient is then the coefficient of \(m \Rightarrow q = - 99\)

The remainder is the constant: \(r = 0\;({\rm{with}}\;0 \le 0 < 101)\)

\(a\;{\rm{div}}\;m\)is then equal to the quotient and \(a\;\bmod \;m\) is equal to the reminder:

\(a\;{\rm{div}}\;m = - 99\)

\(a\;\bmod \;m = 0\)

Hence the solution is

\(a\;{\rm{div}}\;m = - 99\)

\(a\;\bmod \;m = 0\)

04

Step 4(c): Finding a div m and a mod m when \({\bf{a}} = 10299,{\rm{ }}{\bf{m}} = 999\)

\(\begin{array}{l}a = 10299\\d = 999\end{array}\)

Let us determine the quotient and remainder

\(\begin{array}{c}a = 10299\\ = 9990 + 309\\ = 10 \cdot 999 + 309\\ = 10d + 309\end{array}\)

The quotient is then the coefficient of \(m \Rightarrow q = 10\)

The remainder is the constant: \(r = 309\;({\rm{with}}\;0 \le 309 < 999)\)

\(a\;{\rm{div}}\;m\)is then equal to the quotient and \(a\;\bmod \;m\) is equal to the reminder:

\(a\;{\rm{div}}\;m = 10\)

\(a\;\bmod \;m = 309\)

Hence the solution is

\(a\;{\rm{div}}\;m = 10\)

\(a\;\bmod \;m = 309\)

05

Step 5(d): Finding a div m and a mod m when \({\bf{a}} = {\bf{1}}23456,{\rm{ }}{\bf{m}} = 1001\)

\(\begin{array}{l}a = 123456\\d = 1001\end{array}\)

Let us determine the quotient and remainder

\(\begin{array}{c}a = 123456\\ = 123123 + 333\\ = 123 \cdot 1001 + 333\\ = 10d + 333\end{array}\)

The quotient is then the coefficient of \(m \Rightarrow q = 123\)

The remainder is the constant: \(r = 333\;({\rm{with}}\;0 \le 333 < 1001)\)

\(a\;{\rm{div}}\;m\)is then equal to the quotient and \(a\;\bmod \;m\) is equal to the reminder:

\(a\;{\rm{div}}\;m = 123\)

\(a\;\bmod \;m = 333\)

Hence the solution is

\(a\;{\rm{div}}\;m = 123\)

\(a\;\bmod \;m = 333\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free