Chapter 4: Q1E (page 244)
Does\(17\)divide each of these numbers?
a) \(68\)
b) \(84\)
c) \(357\)
d) \(1001\)
Short Answer
(a) Yes
(b) No
(c) Yes
(d) No.
Step by step solution
Step 1
DEFINITIONS
a divides b if there exists an integer c such that \(ac = b\).
Notation: \(a|b\)
SOLUTION
a) \({\rm{17}}\)divides \(68\), because \(17 \cdot 4 = 68\).
Note: you can also notice this by using long division and noting that the remainder is \(0\).
\(1{\rm{ 7}}\mathop{\left){\vphantom{1\begin{array}{l}6{\rm{ 8}}\\{\rm{0}}\\\overline 6 {\rm{ 8}}\\6{\rm{ 8}}\\\overline {{\rm{ }}0} \end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}6{\rm{ 8}}\\{\rm{0}}\\\overline 6 {\rm{ 8}}\\6{\rm{ 8}}\\\overline {{\rm{ }}0} \end{array}}}}
\limits^{\displaystyle\,\,\, {0{\rm{ 4}}}}\)
Step 2
b) \(17 \cdot 4 = 68\)
\(17 \cdot 5 = 85\)
Thus if \(17 \cdot c = 84\), then c has to be between \(4{\rm{ and 5}}\). Thus c cannot be an integer and thus \(17\)does not divide \(84\).
Note: You can also notice this by using long division and noting that the remainder is not \(0\).
\(1{\rm{ 7}}\mathop{\left){\vphantom{1\begin{array}{l}{\rm{8 4}}\\{\rm{0}}\\\overline 8 {\rm{ 4}}\\6{\rm{ 8}}\\\overline {{\rm{1 6 }}} \end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}{\rm{8 4}}\\{\rm{0}}\\\overline 8 {\rm{ 4}}\\6{\rm{ 8}}\\\overline {{\rm{1 6 }}} \end{array}}}}
\limits^{\displaystyle\,\,\, {0{\rm{ 4}}}}\)
c) \(17\)divide \(17\), because \(17 \cdot 21 = 357\).
Note: You can also notice this by using long division and noting that the remainder is \(0\).
\(1{\rm{ 7}}\mathop{\left){\vphantom{1\begin{array}{l}{\rm{3 5 7}}\\{\rm{0}}\\\overline 3 {\rm{ 5}}\\{\rm{3 4}}\\\overline \begin{array}{l}{\rm{1 7}}\\{\rm{1 7}}\\\overline {{\rm{ }}0} {\rm{ }}\end{array} \end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}{\rm{3 5 7}}\\{\rm{0}}\\\overline 3 {\rm{ 5}}\\{\rm{3 4}}\\\overline \begin{array}{l}{\rm{1 7}}\\{\rm{1 7}}\\\overline {{\rm{ }}0} {\rm{ }}\end{array} \end{array}}}}
\limits^{\displaystyle\,\,\, {0{\rm{ 2 1}}}}\)
Step 3
d) \(17 \cdot 58 = 986\)
\(17 \cdot 59 = 1003\)
Thus if\(17 \cdot c = 1001c\), then c has to be between \(58{\rm{ and 59}}\). Thus c cannot be an integer and thus \(17\)does not divide \(1001\).
Note: You can also notice this by using long division and noting that the remainder is not \(0\).
\(1{\rm{ 7}}\mathop{\left){\vphantom{1\begin{array}{l}{\rm{1 0 0 1}}\\{\rm{0}}\\\overline 1 {\rm{ 0}}\\{\rm{ 0}}\\\overline \begin{array}{l}{\rm{1 0 0}}\\{\rm{ 8 5}}\\\overline \begin{array}{l}{\rm{ 1 5 1}}\\{\rm{ 1 3 6}}\\\overline {{\rm{ 1 5 }}} \end{array} {\rm{ }}\end{array} \end{array}}}\right.
\!\!\!\!\overline{\,\,\,\vphantom 1{\begin{array}{l}{\rm{1 0 0 1}}\\{\rm{0}}\\\overline 1 {\rm{ 0}}\\{\rm{ 0}}\\\overline \begin{array}{l}{\rm{1 0 0}}\\{\rm{ 8 5}}\\\overline \begin{array}{l}{\rm{ 1 5 1}}\\{\rm{ 1 3 6}}\\\overline {{\rm{ 1 5 }}} \end{array} {\rm{ }}\end{array} \end{array}}}}
\limits^{\displaystyle\,\,\, {0{\rm{ 0 5 8}}}}\)
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!