Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let m be a positive integer. Show that \({\bf{a}} \equiv {\bf{b}}{\rm{ }}\left( {{\bf{mod}}{\rm{ }}{\bf{m}}} \right){\rm{ }}{\bf{if}}{\rm{ }}{\bf{a}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{m}}{\rm{ }} = {\rm{ }}{\bf{b}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{m}}.\)

Short Answer

Expert verified

Hence proved that \(a \equiv b\;(\bmod \;m)\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept of Division Algorithm 

\(a\)divides\(b\)if there exists an integer\(c\)such that\(b{\rm{ }} = {\rm{ }}ac\)

notation:\({a \mathord{\left/

{\vphantom {a b}} \right.

\kern-\nulldelimiterspace} b}\)

Division algorithm let\(a\)be an integer and\(d\)be a positive integer.

Then there are unique integers\(q\)and\(r\)with\(0 \le r < d\)such that\(a{\rm{ }} = {\rm{ }}dq + r.\)

\(\begin{array}{*{20}{l}}{q{\rm{ }} = {\rm{ }}dq + r}\\{\;r{\rm{ }} = {\rm{ }}a{\rm{ }}mod{\rm{ }}d}\end{array}\)

a is congruent to\(b\)modulo\(m\)if\(m\)divides\(a - b\)

notation \(a \equiv b\;(\bmod \;m)\)

02

Step 2: Showing that \({\bf{a}} \equiv {\bf{b}}{\rm{ }}\left( {{\bf{mod}}{\rm{ }}{\bf{m}}} \right){\rm{ }}{\bf{if}}{\rm{ }}{\bf{a}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{m}}{\rm{ }} = {\rm{ }}{\bf{b}}{\rm{ }}{\bf{mod}}{\rm{ }}{\bf{m}}\)

\(a{\rm{ mod }}m{\rm{ }} = {\rm{ }}b{\rm{ mod }}m\)indicates that there exist an integer\({q_1}\)such that:

\(a{\rm{ mod }}m{\rm{ }} = {\rm{ }}m{q_{1{\rm{ }}}} + b\)

\(b{\rm{ mod }}m = {\rm{ }}a{\rm{ mod }}m\)indicates that there exist an integer\({q_2}\)such that:

\(b{\rm{ mod }}m{\rm{ }} = {\rm{ }}m{q_2} + a\)

since\(a{\rm{ mod }}m{\rm{ }} = {\rm{ }}b{\rm{ mod }}m\):

\(m{q_2} + a{\rm{ }} = {\rm{ }}m{q_1} + b\)

subtract\(b\)from each side of the equation:

\(m{q_2} + a - b{\rm{ }} = {\rm{ }}m{q_1}\)

subtract\(m{q_2}\)from each side of the equation:

\(a - b{\rm{ }} = {\rm{ }}m{q_1} - m{q_2}\)

factorize the right side of the equation:

\(a - b{\rm{ }} = {\rm{ }}m\left( {{q_1} - {q_2}} \right)\)

since\({q_1}\)and\({q_2}\)are both integers, their differences\({q_1} - {q_2}\)is also an integer.

By the definition of divides, we have then shown that\(m\)divides\(a - b\).

By the definition of equivalent modulo m:

\(a \equiv b\;(\bmod \;m)\)

Hence proved that \(a \equiv b\;(\bmod \;m)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free