Chapter 4: Q14E (page 244)
Suppose that a and b are integers,\({\bf{a}} \equiv {\bf{11}}{\rm{ }}\left( {{\bf{mod}}{\rm{ }}{\bf{19}}} \right),{\rm{ }}{\bf{and}}{\rm{ }}{\bf{b}} \equiv {\bf{3}}{\rm{ }}\left( {{\bf{mod}}{\rm{ }}{\bf{19}}} \right)\). Find the integer c with\({\bf{0}} \le {\bf{c}} \le {\bf{18}}\)such that
a)\({\bf{c}} \equiv {\bf{13a}}{\rm{ }}\left( {{\bf{mod}}{\rm{ }}{\bf{19}}} \right).\)
b)\({\bf{c}} \equiv {\bf{8b}}{\rm{ }}\left( {{\bf{mod}}{\rm{ }}{\bf{19}}} \right).\)
c)\({\bf{c}} \equiv {\bf{a}} - {\bf{b}}{\rm{ }}\left( {{\bf{mod}}{\rm{ }}{\bf{19}}} \right).\)
d)\({\bf{c}} \equiv {\bf{7a}}{\rm{ }} + {\rm{ }}{\bf{3b}}{\rm{ }}\left( {{\bf{mod}}{\rm{ }}{\bf{19}}} \right).\)
e)\({\bf{c}} \equiv {\bf{2}}{{\bf{a}}^{\bf{2}}}{\rm{ }} + {\rm{ }}{\bf{3}}{{\bf{b}}^{{\bf{2}}{\rm{ }}}}\left( {{\bf{mod}}{\rm{ }}{\bf{19}}} \right).\)
f )\({\bf{c}} \equiv {{\bf{a}}^{{\bf{3}}{\rm{ }}}} + {\rm{ }}{\bf{4}}{{\bf{b}}^{\bf{3}}}{\rm{ }}\left( {{\bf{mod}}{\rm{ }}{\bf{19}}} \right).\)
Short Answer
- 10
- 5
- 8
- 10
- 3
- 14