Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that a and b are integers, \({\bf{a}} \equiv {\bf{4}}{\rm{ }}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right),{\rm{ }}{\bf{and}}{\rm{ }}{\bf{b}} \equiv {\bf{9}}\;\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right)\). Find the integer c with \({\bf{0}} \le {\bf{c}} \le {\bf{12}}\) such that

a)\({\bf{c}} \equiv {\bf{9a}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

b)\({\bf{c}} \equiv {\bf{11b}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

c)\({\bf{c}} \equiv {\bf{a}} + {\bf{b}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

d)\({\bf{c}} \equiv {\bf{2a}} + {\bf{3b}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

e)\({\bf{c}} \equiv {{\bf{a}}^{\bf{2}}} + {{\bf{b}}^{\bf{2}}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

f ) \({\bf{c}} \equiv {{\bf{a}}^{\bf{3}}} - {{\bf{b}}^{\bf{3}}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

Short Answer

Expert verified
  1. 10
  2. 8
  3. 0
  4. 9
  5. 6
  6. 11

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept of Division Algorithm 

  • Let\(a\)be an integer and\(d\)be a positive integer.
  • Then there are unique Integers\(q\)and\(T\)with\(0 \le \;r < d\)such that\(a = dq + r\).
  • \(q\)is called the quotient and\(T\)is called the remainder.
  • \(\begin{array}{*{20}{l}}{q = a{\rm{ div }}d}\\{\;r = a{\rm{ mod }}d}\end{array}\)
  • Theorem 5: Let m be a positive integer. If

\(a \equiv b\left( {{\rm{mod }}m} \right){\rm{ and }}c \equiv d\left( {{\rm{mod }}m} \right),{\rm{ then }}a + c \equiv b + d\left( {{\rm{mod }}m} \right){\rm{ and }}ac \equiv bd{\rm{ }}\left( {{\rm{mod }}m} \right)\)

02

(a) Finding the integer c when \({\bf{c}} \equiv {\bf{9a}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

\(\begin{array}{l}a \equiv 4\;(\bmod \;13)\\b \equiv 9\;(\bmod \;13)\\0 \le c \le 12\end{array}\)

Use theorem 5:

\(\begin{array}{c}c \equiv 9a\;(\bmod \;13)\\ = 9 \cdot 4\;(\bmod \;13)\\ = 36\;(\bmod \;13)\\ = 10\;(\bmod \;13)\end{array}\)

We then obtain\(c = 10\;{\rm{with}}\;0 \le c \le 12\)

Hence the integer is 10.

03

 (b) Finding the integer c when \({\bf{c}} \equiv {\bf{11b}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

\(\begin{array}{l}a \equiv 4\;(\bmod \;13)\\b \equiv 9\;(\bmod \;13)\\0 \le c \le 12\end{array}\)

Use theorem 5:

\(\begin{array}{c}c \equiv 11b\;(\bmod \;13)\\ = 11 \cdot 9\;(\bmod \;13)\\ = 99\;(\bmod \;13)\\ = 8\;(\bmod \;13)\end{array}\)

We then obtain\(c = 8\;{\rm{with}}\;0 \le c \le 12\)

Hence the integer is 8.

04

(c) Finding the integer c when \({\bf{c}} \equiv {\bf{a}} + {\bf{b}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

\(\begin{array}{l}a \equiv 4\;(\bmod \;13)\\b \equiv 9\;(\bmod \;13)\\0 \le c \le 12\end{array}\)

Use theorem 5:

\(\begin{array}{c}c \equiv a + b\;(\bmod \;13)\\ = 4 + 9\;(\bmod \;13)\\ = 13\;(\bmod \;13)\\ = 0\;(\bmod \;13)\end{array}\)

We then obtain\(c = 0\;{\rm{with}}\;0 \le c \le 12\)

Hence the integer is 0.

05

(d) Finding the integer c when \({\bf{c}} \equiv {\bf{2a}} + {\bf{3b}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

\(\begin{array}{l}a \equiv 4\;(\bmod \;13)\\b \equiv 9\;(\bmod \;13)\\0 \le c \le 12\end{array}\)

Use theorem 5:

\(\begin{array}{c}c \equiv 2a + 3b\;(\bmod \;13)\\ = 2 \cdot 4 + 3 \cdot 9\;(\bmod \;13)\\ = 8 + 27\;(\bmod \;13)\\ = 35\;(\bmod \;13)\\ = 9\;(\bmod \;13)\end{array}\)

We then obtain\(c = 9\;{\rm{with}}\;0 \le c \le 12\)

Hence the integer is 9.

06

(e) Finding the integer c when \({\bf{c}} \equiv {{\bf{a}}^{\bf{2}}} + {{\bf{b}}^{\bf{2}}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

\(\begin{array}{l}a \equiv 4\;(\bmod \;13)\\b \equiv 9\;(\bmod \;13)\\0 \le c \le 12\end{array}\)

Use theorem 5:

\(\begin{array}{c}c \equiv {a^2} + {b^2}\;(\bmod \;13)\\ = {4^2} + {9^2}\;(\bmod \;13)\\ = 16 + 81\;(\bmod \;13)\\ = 97\;(\bmod \;13)\\ = 6\;(\bmod \;13)\end{array}\)

We then obtain\(c = 6\;{\rm{with}}\;0 \le c \le 12\)

Hence the integer is 6.

07

(f) Finding the integer c when \({\bf{c}} \equiv {{\bf{a}}^{\bf{3}}} - {{\bf{b}}^{\bf{3}}}\left( {{\bf{mod}}{\rm{ }}{\bf{13}}} \right).\)

\(\begin{array}{l}a \equiv 4\;(\bmod \;13)\\b \equiv 9\;(\bmod \;13)\\0 \le c \le 12\end{array}\)

Use theorem 5:

\(\begin{array}{c}c \equiv {a^3} - {b^3}\;(\bmod \;13)\\ = {4^3} - {9^3}\;(\bmod \;13)\\ = 64 - 729\;(\bmod 13)\\ = - 665\;(\bmod \;13)\\ = - 2\;(\bmod \;13)\\ = 11\;(\bmod \;13)\end{array}\)

We then obtain\(c = 11\;{\rm{with}}\;0 \le c \le 12\)

Hence the integer is 11.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free