Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove or disprove each of these statements for subsets \({\bf{A}}\), \({\bf{B}}\), and \({\bf{C}}\) of \({{\bf{V}}^{\bf{*}}}\), where \({\bf{V}}\) is an alphabet.

\({\bf{a)}}\)\({\bf{A(B}} \cup {\bf{C) = AB}} \cup {\bf{AC}}\)

\({\bf{b)}}\)\({\bf{A(B}} \cap {\bf{C) = AB}} \cap {\bf{AC}}\)

\({\bf{c)}}\)\(\left( {{\bf{A B}}} \right){\bf{ C = A}}\left( {{\bf{B C}}} \right)\)

\({\bf{d)}}\)\({\bf{(A}} \cup {\bf{B) = A}} \cup {{\bf{B}}^{\bf{*}}}\)

Short Answer

Expert verified

\({\bf{a)}}\)The given \({\bf{A(B}} \cup {\bf{C) = AB}} \cup {\bf{AC}}\) is proved.

\({\bf{b)}}\)The given \({\bf{A(B}} \cap {\bf{C) = AB}} \cap {\bf{AC}}\) is proved.

\({\bf{c)}}\)The given \(\left( {{\bf{A B}}} \right){\bf{ C = A}}\left( {{\bf{B C}}} \right)\) is proved.

\({\bf{d)}}\) The given \({{\bf{(A}} \cup {\bf{B)}}^{\bf{*}}} \ne {{\bf{A}}^{\bf{*}}} \cup {{\bf{B}}^{\bf{*}}}\) is disproved.

Step by step solution

01

Definition

Kleene closure of \({\bf{A}}\) : Set consisting of concatenations of any number of strings from \({\bf{A}}\)

\({{\bf{A}}^{\bf{*}}}{\bf{ = }}\bigcup\limits_{{\bf{k = 0}}}^{{\bf{ + }}\infty } {{{\bf{A}}^{\bf{k}}}} \)

Union \({\bf{A}} \cup {\bf{B}}\) : All elements that are either in in \({\bf{B}}\) (or both).

Intersection \({\bf{A}} \cap {\bf{B}}\) : All elements that are both in \({\bf{A}}\) AND in \({\bf{B}}\).

Distributive laws

\(\begin{array}{l}{\bf{x}} \vee {\bf{(y}} \wedge {\bf{z) = (x}} \vee {\bf{y)}} \wedge {\bf{(x}} \vee {\bf{z)}}\\{\bf{x}} \wedge {\bf{(y}} \vee {\bf{z) = (x}} \wedge {\bf{y)}} \vee {\bf{(x}} \wedge {\bf{z)}}\end{array}\)

Idempotent law:

\(\begin{array}{l}{\bf{A}} \cup {\bf{A = A}}\\{\bf{A}} \cap {\bf{A = A}}\end{array}\)

Commutative laws:

\({\bf{A}} \cup {\bf{B = B}} \cup {\bf{A}}\)and \({\bf{A}} \cap {\bf{B = B}} \cap {\bf{A}}\)

Associative laws:

\({\bf{(A}} \cup {\bf{B)}} \cup {\bf{C = A}} \cup {\bf{(B}} \cup {\bf{C)}}\)and \({\bf{(A}} \cap {\bf{B)}} \cap {\bf{C = A}} \cap {\bf{(B}} \cap {\bf{C)}}\)

02

Prove or disprove the given statement

(a)

Given: \({\bf{A,B,C}} \subseteq {{\bf{V}}^{\bf{*}}}\)

Where \({\bf{V}}\) is an alphabet.

To proof: \({\bf{A(B}} \cup {\bf{C) = AB}} \cup {\bf{AC}}\)

PROOF

Use distributive law

\(\begin{aligned} A(B \cup C) &= \{ ab\mid a \in A \wedge b \in B \cup C\} \\ & = \{ ab\mid a \in A \wedge (b \in B \vee b \in C)\} \\ &= \{ ab\mid (a \in A \wedge b \in B) \vee (a \in A \wedge b \in C)\} \\ &= \{ ab\mid (a \in A \wedge b \in B) \vee (a \in A \wedge b \in C)\} \\ &= \{ ab\mid (a \in A \wedge b \in B)\} \cup \{ ab\mid (a \in A \wedge b \in C)\} \\ & = AB \cup AC \\ \end{aligned}\)

Therefore, the given \({\bf{A(B}} \cup {\bf{C) = AB}} \cup {\bf{AC}}\) is proved.

03

Prove or disprove the given statement

(b)

Given: \({\bf{A,B,C}} \subseteq {{\bf{V}}^{\bf{*}}}\)

Where \({\bf{V}}\) is an alphabet.

To proof: \({\bf{A(B}} \cap {\bf{C) = AB}} \cap {\bf{AC}}\)

PROOF

Use associative, idempotent and commutative law

\(\begin{aligned} A(B \cap C) &= \{ ab\mid a \in A \wedge b \in B \cap C\} \\ &= \{ ab\mid a \in A \wedge (b \in B \wedge b \in C)\} \\ &= \{ ab\mid (a \in A \wedge a \in A) \wedge (b \in B \wedge b \in C)\} \\ &= \{ ab\mid a \in A \wedge (a \in A \wedge (b \in B \wedge b \in C))\} \\ \end{aligned} \)

Further, solve the above expression,

\(\begin{aligned} A(B \cap C) &= \{ ab\mid a \in A \wedge ((a \in A \wedge b \in B) \wedge b \in C)\} \\ &= \{ ab\mid a \in A \wedge ((b \in B \wedge a \in A) \wedge b \in C)\} \\ & = \{ ab\mid a \in A \wedge (b \in B \wedge (a \in A \wedge b \in C))\} \\ & = \{ ab\mid (a \in A \wedge b \in B) \wedge (a \in A \wedge b \in C)\} \\ & = \{ ab\mid (a \in A \wedge b \in B)\} \cap \{ ab\mid (a \in A \wedge b \in C)\} \\ & = AB \cap AC \\\end{aligned} \)

Therefore, the given \({\bf{A(B}} \cap {\bf{C) = AB}} \cap {\bf{AC}}\) is proved.

04

Prove or disprove the given statement

(c)

Given: \({\bf{A,B,C}} \subseteq {{\bf{V}}^{\bf{*}}}\)

Where \({\bf{V}}\) is an alphabet.

To proof: \(\left( {{\bf{A B}}} \right){\bf{ C = A}}\left( {{\bf{B C}}} \right)\)

PROOF

Use associative law

\(\begin{aligned} (AB)C &= \{ xc\mid a \in AB \wedge c \in C\} \\ & = \{ abc\mid (a \in A \wedge b \in B) \wedge c \in C\} \\ &= \{ abc\mid a \in A \wedge (b \in B \wedge c \in C)\} \\ &= \{ ay\mid a \in A \wedge y \in BC\} \\ &= A(BC) \\ \end{aligned} \)

Therefore, the given \(\left( {{\bf{A B}}} \right){\bf{ C = A}}\left( {{\bf{B C}}} \right)\) is proved.

05

Prove or disprove the given statement

(d)

The statement \({{\bf{(A}} \cup {\bf{B)}}^{\bf{*}}}{\bf{ = }}{{\bf{A}}^{\bf{*}}} \cup {{\bf{B}}^{\bf{*}}}\) is false, with you will justify with a counter example.

Counter example:

Let \({\bf{A = }}\left\{ {\bf{0}} \right\}\) and \({\bf{B = }}\left\{ {\bf{1}} \right\}\). Then note \({\bf{A}} \cup {\bf{B = \{ 0,1\} }}\).

\({{\bf{A}}^{\bf{*}}}\)contains strings with only \({\bf{0's}}\) and \({{\bf{B}}^{\bf{*}}}\) contains only strings of \({\bf{1's}}\). Note that \({{\bf{A}}^{\bf{*}}} \cup {{\bf{B}}^{\bf{*}}}\) contains all bit strings that contain only \({\bf{1's}}\) or only \({\bf{0's}}\), while \({{\bf{(A}} \cup {\bf{B)}}^{\bf{*}}}\) contains all possible bit strings. Thus, it is not the same set.

For example, \(10 \notin {{\bf{A}}^{\bf{*}}} \cup {{\bf{B}}^{\bf{*}}}\)and \(10 \in {{\bf{(A}} \cup {\bf{B)}}^{\bf{*}}}\) as \(10\) is a bit string that does not contain only \({\bf{0's}}\) nor only \({\bf{1's}}\).

Therefore, the given \({{\bf{(A}} \cup {\bf{B)}}^{\bf{*}}} \ne {{\bf{A}}^{\bf{*}}} \cup {{\bf{B}}^{\bf{*}}}\) is disproved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a) Show that the grammar \({{\bf{G}}_{\bf{1}}}\) given in Example 6 generates the set\({\bf{\{ }}{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{m,}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\).

b) Show that the grammar \({{\bf{G}}_{\bf{2}}}\) in Example 6 generates the same set.

a) Construct a phrase-structure grammar that generates all signed decimal numbers, consisting of a sign, either + or โˆ’; a nonnegative integer; and a decimal fraction that is either the empty string or a decimal point followed by a positive integer, where initial zeros in an integer are allowed.

b) Give the Backusโ€“Naur form of this grammar.

c) Construct a derivation tree for โˆ’31.4 in this grammar.

Construct phrase-structure grammars to generate each of these sets.

a) \(\left\{ {{{\bf{1}}^{\bf{n}}}{\bf{|n}} \ge {\bf{0}}} \right\}\)

b) \(\left\{ {{\bf{1}}{{\bf{0}}^{\bf{n}}}{\bf{|n}} \ge {\bf{0}}} \right\}\)

c) \(\left\{ {{\bf{1}}{{\bf{1}}^{\bf{n}}}{\bf{|n}} \ge {\bf{0}}} \right\}\)

Give production rule in Backus-Naur form for an identifier if it can consist of

a. One or more lower case letters.

b. At least three but no more than six lowercase letter

c. One to six uppercase or lowercase letters beginning with an uppercase letter.

d. A lowercase letter, followed by a digit or an underscore, followed by three or four alphanumeric characters (lower or uppercase letters and digits.)

Show that the grammar \({\bf{G = }}\left( {{\bf{V, T, S, P}}} \right)\) with \({\bf{V = }}\left\{ {{\bf{0, S}}} \right\}{\bf{, T = }}\left\{ {\bf{0}} \right\}\), starting state \({\bf{S}}\), and productions \({\bf{S}} \to {\bf{0S}}\) and \({\bf{S}} \to 0\) is unambiguous.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free