Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that A is a subset of\({{\bf{V}}^{\bf{*}}}\)where V is an alphabet.Prove or disprove each of these statements.

\(\begin{array}{l}{\bf{a)}}\,\,{\bf{A}} \subseteq {{\bf{A}}^{\bf{2}}}\\{\bf{b)}}\,\,{\bf{if}}\,{\bf{A = }}{{\bf{A}}^{\bf{2}}}{\bf{,then}}\,{\bf{\lambda }} \in {\bf{A}}\\{\bf{c)}}\,\,{\bf{A\{ \lambda \} = A}}\\{\bf{d)}}\,\,{{\bf{(}}{{\bf{A}}^{\bf{*}}}{\bf{)}}^{\bf{*}}}{\bf{ = }}{{\bf{A}}^{\bf{*}}}\\{\bf{e)}}\,\,{{\bf{A}}^{\bf{*}}}{\bf{A = }}{{\bf{A}}^{\bf{*}}}\\{\bf{f)}}\,\,\left| {{{\bf{A}}^{\bf{n}}}} \right|{\bf{ = }}{\left| {\bf{A}} \right|^{\bf{n}}}\end{array}\)

Short Answer

Expert verified
  1. The statement is false.
  2. The statement is false.
  3. The statement is true
  4. The statement is true.
  5. The statement is false.
  6. The statement is false.

Step by step solution

01

Definition

Here AB represents the concatenation of A and B.

\(AB = {\bf{ }}\left\{ {xy|\,x \in A\,and\,y \in B} \right\}\)

Kleene closure of A set consisting of the concatenation of any number of strings from A\({{\bf{A}}^{\bf{*}}}{\bf{ = }}\bigcup\limits_{k = 0}^{ + \infty } {{{\bf{A}}^{\bf{k}}}} \).

02

Show the result for \({\bf{A}} \subseteq {{\bf{A}}^{\bf{2}}}\).

(a)Here it is given \(A \subseteq {A^2}\).

\(A \subseteq {A^2}\)is not always true.

It proved it by an example. - if \(A = \left\{ {10} \right\}\), then

\(\begin{aligned}{A^2} &= AA\\ &= \left\{ {xy|x \in A\,{\rm{and}}\,y \in A} \right\}\\ &= \left\{ {xy|x \in 10\,{\rm{and}}\,y \in 10} \right\}\\ &= \left\{ {1010} \right\}\end{aligned}\)

Since,\({A^2}\)does not contain 10.

Hence, the statement is false.

03

Find the result \({\bf{if}}\,{\bf{A = }}{{\bf{A}}^{\bf{2}}}{\bf{,then}}\,{\bf{\lambda }} \in {\bf{A}}\).

(b)If \(A = {A^2},\,\,{\rm{then}}\,\lambda \in A\)

The statement is not true if \(A = \phi \) because \(A = {A^2}\)is true while\(\lambda \notin A\).

\(\begin{aligned}{c}{A^2} &= \phi \phi \\ &= \left\{ {xy|x \in \phi \,and\,y \in \phi } \right\}\\ &= \phi \\ &= A\\{A^2} &= A\end{aligned}\)

04

Get the result for \({\bf{A\{ \lambda \}  = A}}\).

(c)\(\begin{aligned}A\left( \lambda \right) &= \left\{ {xy|x \in A\,{\rm{and}}\,y \in \left\{ \lambda \right\}} \right\}\\ &= \left\{ {xy|x \in A\,{\rm{and}}\,y \in \lambda } \right\}\\ &= \left\{ {x\lambda |x \in A} \right\}\\ &= \left\{ {x|x \in A} \right\}\\A\left( \lambda \right) &= A\end{aligned}\)

05

Proof of \({{\bf{(}}{{\bf{A}}^{\bf{*}}}{\bf{)}}^{\bf{*}}}{\bf{ = }}{{\bf{A}}^{\bf{*}}}\).

(d)Now, according to the Kleene closure's definition

\({\left( {{A^*}} \right)^*} = \bigcup\limits_{k = 0}^{ + \infty } {{{\left( {{A^*}} \right)}^k}} \)

\({\left( {{A^*}} \right)^2}\)Represent the concatenation of\({A^*}\)and\({A^*}\) Thus

\(\begin{aligned}{c}{\left( {{A^*}} \right)^2} &= \left\{ {xy|x \in A\,{\rm{and}}\,y \in {A^*}} \right\}\\{\left( {{A^*}} \right)^2} &= {A^*}\end{aligned}\)

Similarly,

\(\begin{aligned}{\left( {{A^*}} \right)^n} &= {\left( {{A^*}} \right)^{n - 1}}{A^*}\\ &= {A^*}{A^*}\\ &= {\left( {{A^*}} \right)^2}\\ &= {A^*}form\\ &= 2,3,...\end{aligned}\)

Using the definition of the Kleene closure, then

\(\begin{aligned}{c}\left( {A*} \right)* &= \bigcup\limits_{k = 0}^{ + \infty } {{{\left( {{A^*}} \right)}^k}} \\ &= \bigcup\limits_{k = 0}^{ + \infty } {\left( {{A^*}} \right)} A*\end{aligned}\)

Similarly,

\(\begin{aligned}{c}{\left( {A*} \right)^{^n}} &= {\left( {A*} \right)^{^{n - 1}}}A*\\ &= A*A*\\ &= {\left( {A*} \right)^2}\\ &= A*\end{aligned}\)

Using the definition of the Kleene closure, then

\(\begin{aligned}{c}\left( {A*} \right)* &= \bigcup\limits_{k = 0}^{ + \infty } {{{\left( {{A^*}} \right)}^k}} \\ &= \bigcup\limits_{k = 0}^{ + \infty } {\left( {{A^*}} \right)} \\\left( {A*} \right)* &= A*\end{aligned}\)

06

find the result for \({{\bf{A}}^{\bf{*}}}{\bf{A = }}{{\bf{A}}^{\bf{*}}}\).

(e)\(A*A = A*\)is not true if \(\lambda \notin A\),because contains\(\lambda \) and\(A*A\) will not contains\(\lambda \) (since A does not contains \(\lambda \)).

07

Show result \(\left| {{{\bf{A}}^{\bf{n}}}} \right|{\bf{ = }}{\left| {\bf{A}} \right|^{\bf{n}}}\).

(f)The result show by the example.

Let \({\bf{A = \{ \lambda ,1\} }}\)

X

Y

xy

\(\lambda \)

\(\lambda \)

\(\lambda \)

\(\lambda \)

1

1

1

\(\lambda \)

1

1

1

11

Then\({A^2} = \left\{ {xy|x \in A\,{\rm{and}}\,y \in A} \right\} = \left\{ {\lambda ,1,11} \right\}\). Since A contains 2 elements and \({A^2}\)contains 3 elements.

Thus, the statement is false.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free