Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that A is a subset of\({{\bf{V}}^{\bf{*}}}\)where V is an alphabet.Prove or disprove each of these statements.

\(\begin{array}{l}{\bf{a)}}\,\,{\bf{A}} \subseteq {{\bf{A}}^{\bf{2}}}\\{\bf{b)}}\,\,{\bf{if}}\,{\bf{A = }}{{\bf{A}}^{\bf{2}}}{\bf{,then}}\,{\bf{\lambda }} \in {\bf{A}}\\{\bf{c)}}\,\,{\bf{A\{ \lambda \} = A}}\\{\bf{d)}}\,\,{{\bf{(}}{{\bf{A}}^{\bf{*}}}{\bf{)}}^{\bf{*}}}{\bf{ = }}{{\bf{A}}^{\bf{*}}}\\{\bf{e)}}\,\,{{\bf{A}}^{\bf{*}}}{\bf{A = }}{{\bf{A}}^{\bf{*}}}\\{\bf{f)}}\,\,\left| {{{\bf{A}}^{\bf{n}}}} \right|{\bf{ = }}{\left| {\bf{A}} \right|^{\bf{n}}}\end{array}\)

Short Answer

Expert verified
  1. The statement is false.
  2. The statement is false.
  3. The statement is true
  4. The statement is true.
  5. The statement is false.
  6. The statement is false.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

Here AB represents the concatenation of A and B.

\(AB = {\bf{ }}\left\{ {xy|\,x \in A\,and\,y \in B} \right\}\)

Kleene closure of A set consisting of the concatenation of any number of strings from A\({{\bf{A}}^{\bf{*}}}{\bf{ = }}\bigcup\limits_{k = 0}^{ + \infty } {{{\bf{A}}^{\bf{k}}}} \).

02

Show the result for \({\bf{A}} \subseteq {{\bf{A}}^{\bf{2}}}\).

(a)Here it is given \(A \subseteq {A^2}\).

\(A \subseteq {A^2}\)is not always true.

It proved it by an example. - if \(A = \left\{ {10} \right\}\), then

\(\begin{aligned}{A^2} &= AA\\ &= \left\{ {xy|x \in A\,{\rm{and}}\,y \in A} \right\}\\ &= \left\{ {xy|x \in 10\,{\rm{and}}\,y \in 10} \right\}\\ &= \left\{ {1010} \right\}\end{aligned}\)

Since,\({A^2}\)does not contain 10.

Hence, the statement is false.

03

Find the result \({\bf{if}}\,{\bf{A = }}{{\bf{A}}^{\bf{2}}}{\bf{,then}}\,{\bf{\lambda }} \in {\bf{A}}\).

(b)If \(A = {A^2},\,\,{\rm{then}}\,\lambda \in A\)

The statement is not true if \(A = \phi \) because \(A = {A^2}\)is true while\(\lambda \notin A\).

\(\begin{aligned}{c}{A^2} &= \phi \phi \\ &= \left\{ {xy|x \in \phi \,and\,y \in \phi } \right\}\\ &= \phi \\ &= A\\{A^2} &= A\end{aligned}\)

04

Get the result for \({\bf{A\{ \lambda \}  = A}}\).

(c)\(\begin{aligned}A\left( \lambda \right) &= \left\{ {xy|x \in A\,{\rm{and}}\,y \in \left\{ \lambda \right\}} \right\}\\ &= \left\{ {xy|x \in A\,{\rm{and}}\,y \in \lambda } \right\}\\ &= \left\{ {x\lambda |x \in A} \right\}\\ &= \left\{ {x|x \in A} \right\}\\A\left( \lambda \right) &= A\end{aligned}\)

05

Proof of \({{\bf{(}}{{\bf{A}}^{\bf{*}}}{\bf{)}}^{\bf{*}}}{\bf{ = }}{{\bf{A}}^{\bf{*}}}\).

(d)Now, according to the Kleene closure's definition

\({\left( {{A^*}} \right)^*} = \bigcup\limits_{k = 0}^{ + \infty } {{{\left( {{A^*}} \right)}^k}} \)

\({\left( {{A^*}} \right)^2}\)Represent the concatenation of\({A^*}\)and\({A^*}\) Thus

\(\begin{aligned}{c}{\left( {{A^*}} \right)^2} &= \left\{ {xy|x \in A\,{\rm{and}}\,y \in {A^*}} \right\}\\{\left( {{A^*}} \right)^2} &= {A^*}\end{aligned}\)

Similarly,

\(\begin{aligned}{\left( {{A^*}} \right)^n} &= {\left( {{A^*}} \right)^{n - 1}}{A^*}\\ &= {A^*}{A^*}\\ &= {\left( {{A^*}} \right)^2}\\ &= {A^*}form\\ &= 2,3,...\end{aligned}\)

Using the definition of the Kleene closure, then

\(\begin{aligned}{c}\left( {A*} \right)* &= \bigcup\limits_{k = 0}^{ + \infty } {{{\left( {{A^*}} \right)}^k}} \\ &= \bigcup\limits_{k = 0}^{ + \infty } {\left( {{A^*}} \right)} A*\end{aligned}\)

Similarly,

\(\begin{aligned}{c}{\left( {A*} \right)^{^n}} &= {\left( {A*} \right)^{^{n - 1}}}A*\\ &= A*A*\\ &= {\left( {A*} \right)^2}\\ &= A*\end{aligned}\)

Using the definition of the Kleene closure, then

\(\begin{aligned}{c}\left( {A*} \right)* &= \bigcup\limits_{k = 0}^{ + \infty } {{{\left( {{A^*}} \right)}^k}} \\ &= \bigcup\limits_{k = 0}^{ + \infty } {\left( {{A^*}} \right)} \\\left( {A*} \right)* &= A*\end{aligned}\)

06

find the result for \({{\bf{A}}^{\bf{*}}}{\bf{A = }}{{\bf{A}}^{\bf{*}}}\).

(e)\(A*A = A*\)is not true if \(\lambda \notin A\),because contains\(\lambda \) and\(A*A\) will not contains\(\lambda \) (since A does not contains \(\lambda \)).

07

Show result \(\left| {{{\bf{A}}^{\bf{n}}}} \right|{\bf{ = }}{\left| {\bf{A}} \right|^{\bf{n}}}\).

(f)The result show by the example.

Let \({\bf{A = \{ \lambda ,1\} }}\)

X

Y

xy

\(\lambda \)

\(\lambda \)

\(\lambda \)

\(\lambda \)

1

1

1

\(\lambda \)

1

1

1

11

Then\({A^2} = \left\{ {xy|x \in A\,{\rm{and}}\,y \in A} \right\} = \left\{ {\lambda ,1,11} \right\}\). Since A contains 2 elements and \({A^2}\)contains 3 elements.

Thus, the statement is false.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Construct phrase-structure grammars to generate each of these sets.

a) \(\left\{ {\left. {{\bf{0}}{{\bf{1}}^{{\bf{2n}}}}} \right|{\bf{n}} \ge {\bf{0}}} \right\}\)

b) \(\left\{ {\left. {{{\bf{0}}^{\bf{n}}}{{\bf{1}}^{{\bf{2n}}}}} \right|{\bf{n}} \ge {\bf{0}}} \right\}\)

c) \(\left\{ {\left. {{{\bf{0}}^{\bf{n}}}{{\bf{1}}^{\bf{m}}}{{\bf{0}}^{\bf{n}}}} \right|{\bf{m}} \ge {\bf{0}}\,{\bf{and}}\,{\bf{n}} \ge {\bf{0}}} \right\}\)

Define a Turing machine.

Let V = {S, A, B, a, b} and T = {a, b}. Find the language generated by the grammar (V, T, S, P) when theset P of productions consists of

\(\begin{array}{*{20}{l}}{{\bf{a) S }} \to {\bf{ AB, A }} \to {\bf{ ab, B }} \to {\bf{ bb}}{\bf{.}}}\\{{\bf{b) S }} \to {\bf{ AB, S }} \to {\bf{ aA, A }} \to {\bf{ a, B }} \to {\bf{ ba}}{\bf{.}}}\\{{\bf{c) S }} \to {\bf{ AB, S }} \to {\bf{ AA, A }} \to {\bf{ aB, A }} \to {\bf{ ab, B }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{d) S }} \to {\bf{ AA, S }} \to {\bf{ B, A }} \to {\bf{ aaA, A }} \to {\bf{ aa, B }} \to {\bf{ bB, B }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{e) S }} \to {\bf{ AB, A }} \to {\bf{ aAb, B }} \to {\bf{ bBa, A }} \to {\bf{ \lambda , B }} \to {\bf{ \lambda }}{\bf{.}}}\end{array}\)

Find the output generated from the input string 10001 for the finite-state machine with the state diagram in

a) Exercise 2(a).

b) Exercise 2(b).

c) Exercise 2(c).

For each of these strings, determine whether it is generated by the grammar for infix expressions from Exercise 40. If it is, find the steps used to generate the string.

\(\begin{array}{*{20}{l}}{{\bf{a) x + y + z}}}\\{{\bf{b) a/b + c/d}}}\\{{\bf{c) m*}}\left( {{\bf{n + p}}} \right)}\\{{\bf{d) + m - n + p - q}}}\\{{\bf{e) }}\left( {{\bf{m + n}}} \right){\bf{*}}\left( {{\bf{p - q}}} \right)}\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free