Chapter 13: Q7E (page 847)
Let V be an alphabet, and let A and B be subsets of \({\bf{V*}}\) with A⊆B. Show that \({\bf{A*}}\)⊆B*.
Short Answer
V be an alphabet, and A and B be subsets of \({\bf{V*}}\) with A⊆B then \({\bf{A*}}\)⊆\({\bf{B*}}\).
Chapter 13: Q7E (page 847)
Let V be an alphabet, and let A and B be subsets of \({\bf{V*}}\) with A⊆B. Show that \({\bf{A*}}\)⊆B*.
V be an alphabet, and A and B be subsets of \({\bf{V*}}\) with A⊆B then \({\bf{A*}}\)⊆\({\bf{B*}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether each of these strings is recognized by the deterministic finite-state automaton in Figure 1.
a)010b) 1101 c) 1111110d) 010101010
let \({{\bf{G}}_{\bf{1}}}\) and \({{\bf{G}}_{\bf{2}}}\) be context-free grammars, generating the language\({\bf{L}}\left( {{{\bf{G}}_{\bf{1}}}} \right)\) and \({\bf{L}}\left( {{{\bf{G}}_{\bf{2}}}} \right)\), respectively. Show that there is a context-free grammar generating each of these sets.
a) \({\bf{L}}\left( {{{\bf{G}}_{\bf{1}}}} \right){\bf{UL}}\left( {{{\bf{G}}_{\bf{2}}}} \right)\)
b) \({\bf{L}}\left( {{{\bf{G}}_{\bf{1}}}} \right){\bf{L}}\left( {{{\bf{G}}_{\bf{2}}}} \right)\)
c) \({\bf{L}}{\left( {{{\bf{G}}_{\bf{1}}}} \right)^{\bf{*}}}\)
a) Show that the grammar \({{\bf{G}}_{\bf{1}}}\) given in Example 6 generates the set\({\bf{\{ }}{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{m,}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\).
b) Show that the grammar \({{\bf{G}}_{\bf{2}}}\) in Example 6 generates the same set.
Construct a deterministic finite-state automaton that recognizes the set of all bit strings that end with 10.
What do you think about this solution?
We value your feedback to improve our textbook solutions.