Chapter 13: Q6E (page 898)
Construct a Turing machine with tape symbols \({\bf{0}}\),\({\bf{1}}\), and \({\bf{B}}\) that, when given a bit string as input, adds a \({\bf{1}}\) to the end of the bit string and does not change any of the other symbols on the tape.
Short Answer
The constructed Turing machine is
\(\begin{array}{c}{\bf{T = }}\left( {{\bf{S,I,f,}}{{\bf{s}}_{\bf{0}}}} \right)\\{\bf{S = }}\left\{ {{{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}} \right\}\\{\bf{I = \{ 0,1,B\} }}\\\left( {{{\bf{s}}_{\bf{0}}}{\bf{,0,}}{{\bf{s}}_{\bf{0}}}{\bf{,0,R}}} \right)\\\left( {{{\bf{s}}_{\bf{0}}}{\bf{,1,}}{{\bf{s}}_{\bf{0}}}{\bf{,1,R}}} \right)\\\left( {{{\bf{s}}_{\bf{0}}}{\bf{,B,}}{{\bf{s}}_{\bf{1}}}{\bf{,1,R}}} \right)\end{array}\)