Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a Turing machine with tape symbols \({\bf{0}}\),\({\bf{1}}\), and \({\bf{B}}\) that, when given a bit string as input, adds a \({\bf{1}}\) to the end of the bit string and does not change any of the other symbols on the tape.

Short Answer

Expert verified

The constructed Turing machine is

\(\begin{array}{c}{\bf{T = }}\left( {{\bf{S,I,f,}}{{\bf{s}}_{\bf{0}}}} \right)\\{\bf{S = }}\left\{ {{{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}} \right\}\\{\bf{I = \{ 0,1,B\} }}\\\left( {{{\bf{s}}_{\bf{0}}}{\bf{,0,}}{{\bf{s}}_{\bf{0}}}{\bf{,0,R}}} \right)\\\left( {{{\bf{s}}_{\bf{0}}}{\bf{,1,}}{{\bf{s}}_{\bf{0}}}{\bf{,1,R}}} \right)\\\left( {{{\bf{s}}_{\bf{0}}}{\bf{,B,}}{{\bf{s}}_{\bf{1}}}{\bf{,1,R}}} \right)\end{array}\)

Step by step solution

01

Step \({\bf{1}}\): Definition

A Turing machine \({\bf{T = }}\left( {{\bf{S,I,f,}}{{\bf{s}}_{\bf{0}}}} \right)\) contains a finite set \({\bf{S}}\) of states, an alphabet \({\bf{I}}\) containing the blank symbol \({\bf{B}}\), a starting state \({{\bf{s}}_{\bf{0}}}\) and a partial function from \({\bf{S \times I}}\)to \({\bf{S \times I \times \{ R,L\} }}\). Note: The partial function \({\bf{f}}\) is often represented as \(5\)-tuples.

It will require \(2\) states \({{\bf{s}}_{\bf{0}}}\) and \({{\bf{s}}_{\bf{1}}}\) (how to use these states is explained in the exercise below), which will be contained in the set \({\bf{S}}\).

\({\bf{S = }}\left\{ {{{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}} \right\}\)

The alphabet \({\bf{I}}\) needs to contain the tape symbols. The tape symbols are given as \({\bf{0}}\),\({\bf{1}}\) and \({\bf{B}}\).

\({\bf{I = \{ 0,1,B\} }}\)

02

Assuming the partial function into five tuples

Next, it will define the partial function as five tuples.

As long as the input is a \({\bf{0}}\) or a \({\bf{1}}\), it will keep the input unchanged and move one position to the right (as it only want to add a \({\bf{1}}\) at the end of the tape).

\(\begin{array}{c}\left( {{{\bf{s}}_{\bf{0}}}{\bf{,0,}}{{\bf{s}}_{\bf{0}}}{\bf{,0,R}}} \right)\\\left( {{{\bf{s}}_{\bf{0}}}{\bf{,1,}}{{\bf{s}}_{\bf{0}}}{\bf{,1,R}}} \right)\end{array}\)

Once it arrives at the first blank symbol, it will at a \({\bf{1}}\). Note that \({\bf{1}}\) will be added at the end of the bit string. It will then move to the state \({{\bf{s}}_{\bf{1}}}\) and move one position to the right.

\(\left( {{{\bf{s}}_{\bf{0}}}{\bf{,B,}}{{\bf{s}}_{\bf{1}}}{\bf{,1,R}}} \right)\)

Add any five-tuples that start from \({{\bf{s}}_{\bf{1}}}\) such that the algorithm ends once it reaches state \({{\bf{s}}_{\bf{1}}}\) (which is considered the final state).

Therefore, the constructed Turing machine with tape symbols\({\bf{0}}\),\({\bf{1}}\), and\({\bf{B}}\)that, when given a bit string as input, adds a\({\bf{1}}\)to the end of the bit string and does not change any of the other symbols on the tape is

\(\begin{array}{c}\left( {{{\bf{s}}_{\bf{0}}}{\bf{,0,}}{{\bf{s}}_{\bf{0}}}{\bf{,0,R}}} \right)\\\left( {{{\bf{s}}_{\bf{0}}}{\bf{,1,}}{{\bf{s}}_{\bf{0}}}{\bf{,1,R}}} \right)\\\left( {{{\bf{s}}_{\bf{0}}}{\bf{,B,}}{{\bf{s}}_{\bf{1}}}{\bf{,1,R}}} \right)\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For each of these strings, determine whether it is generated by the grammar for infix expressions from Exercise 40. If it is, find the steps used to generate the string.

\(\begin{array}{*{20}{l}}{{\bf{a) x + y + z}}}\\{{\bf{b) a/b + c/d}}}\\{{\bf{c) m*}}\left( {{\bf{n + p}}} \right)}\\{{\bf{d) + m - n + p - q}}}\\{{\bf{e) }}\left( {{\bf{m + n}}} \right){\bf{*}}\left( {{\bf{p - q}}} \right)}\end{array}\)

Draw the state diagrams for the finite-state machines with these state tables.

Let V = {S, A, B, a, b} and T = {a, b}. Find the language generated by the grammar (V, T, S, P) when theset P of productions consists of

\(\begin{array}{*{20}{l}}{{\bf{a) S }} \to {\bf{ AB, A }} \to {\bf{ ab, B }} \to {\bf{ bb}}{\bf{.}}}\\{{\bf{b) S }} \to {\bf{ AB, S }} \to {\bf{ aA, A }} \to {\bf{ a, B }} \to {\bf{ ba}}{\bf{.}}}\\{{\bf{c) S }} \to {\bf{ AB, S }} \to {\bf{ AA, A }} \to {\bf{ aB, A }} \to {\bf{ ab, B }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{d) S }} \to {\bf{ AA, S }} \to {\bf{ B, A }} \to {\bf{ aaA, A }} \to {\bf{ aa, B }} \to {\bf{ bB, B }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{e) S }} \to {\bf{ AB, A }} \to {\bf{ aAb, B }} \to {\bf{ bBa, A }} \to {\bf{ \lambda , B }} \to {\bf{ \lambda }}{\bf{.}}}\end{array}\)

a)what is the language generated by a phrase-structure grammar G?

b)What is the language generated by the grammar Gwith vocabulary{S,0,1}, set of terminals T= {0,1}, starting symbol S, and productions Sโ†’000S, Sโ†’1?

c)Give a phrase-structure grammar that generates the set \({\bf{\{ 0}}{{\bf{1}}^{\bf{n}}}{\bf{|n = 0,1,2}}....{\bf{\} }}\).

Construct phrase-structure grammars to generate each of these sets.

a) \(\left\{ {\left. {{{\bf{0}}^{\bf{n}}}} \right|{\bf{n}} \ge {\bf{0}}} \right\}\)

b) \(\left\{ {\left. {{{\bf{1}}^{\bf{n}}}{\bf{0}}} \right|{\bf{n}} \ge {\bf{0}}} \right\}\)

c) \(\left\{ {\left. {{{\left( {{\bf{000}}} \right)}^{\bf{n}}}} \right|{\bf{n}} \ge {\bf{0}}} \right\}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free