Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Answer these questions about the finite-state automaton shown here.

a)Find the k-equivalence classes of M for\({\bf{k = 0,1,2, and 3}}\). Also, find the∗-equivalence classes of M.

b)Construct the quotient automaton M of\(\overline {\bf{M}} \).

Short Answer

Expert verified
  1. The states for 1-equivalence class.

    Final states=\({{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}{\bf{,}}{{\bf{s}}_{\bf{6}}}\)

    Non-final state=\({{\bf{s}}_{\bf{o}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\).


  2. Construction:

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

According to the figure

Here the given figure contains three states\({{\bf{s}}_{\bf{o}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}\).

If there is an arrow from \({{\bf{s}}_{\bf{i}}}\) to \({{\bf{s}}_{\bf{j}}}\) with label x, then we write it down in a row \({{\bf{s}}_{\bf{j}}}\)and in the row \({{\bf{s}}_{\bf{i}}}\)and in column x of the following table.

State01
\({{\bf{s}}_{\bf{o}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{6}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{6}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{6}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{6}}}\)

0-equivalence class:

The 0-equivalence class are the set of all final state and the set of all non-final states. The final states are denoted by two circles, while the non-final states are denoted by a single circle.

Final states=\({{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}{\bf{,}}{{\bf{s}}_{\bf{6}}}\) and non-final state=\({{\bf{s}}_{\bf{o}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\).

02

1-equivalence class

S and t are in the same 1-equivalence class, if s and t are both non-final or are both final states and if I arrive at both final states and both non-finite states, when the input is a and when starting from states’s and t.

\({{\bf{s}}_{\bf{o}}}\)are the only non-final states that move to a non-final state when the input is 0, thus \({{\bf{s}}_{\bf{o}}}\)is in its 1-equivalence class.

\({{\bf{s}}_{\bf{1}}}\)is the only remaining non-final state that moves to a non-final state when the input is 1, thus \({{\bf{s}}_{\bf{1}}}\)is in its 1-equivalence class.

\({{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\)is the only remaining non-final state that moves to a non-final state when the input is 0 and 1, thus\({{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\)is in the same 1-equivalence class.

\({{\bf{s}}_{\bf{6}}}\)is the only remaining final state that remains at a final state when the input is 1, thus\({{\bf{s}}_{\bf{6}}}\)is in its 1-equivalence class.

\({{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}\)are the remaining final states that move to a final state when the input is 0 and that move to a non-final state when the input is 1, thus\({{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\)being in the same 1-equivalence class.

2-equivalence class:

The 1-equivalence classes that contain only a single state are also 2-equivalence classes.

\({{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\)are in the same 1-equivalence class. The input01 ends at a non-final state when starting from\({{\bf{s}}_{\bf{2}}}\), while the inputs 00, 10, 11 ends at a final state when starting from\({{\bf{s}}_{\bf{2}}}\). Input 01 ends at a non-final state when starting from\({{\bf{s}}_{\bf{4}}}\), while input 00, 10, 11 ends at a final state when starting from\({{\bf{s}}_{\bf{4}}}\). Thus \({{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\)are also in the same 2-equivalence class.

\({{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}\)are in the same 1-equivalence class. Input 01 ends at a non-final state when starting from\({{\bf{s}}_{\bf{3}}}\), while input 00, 10, 11 ends at a final state when starting from\({{\bf{s}}_{\bf{3}}}\). Input 01 ends at a non-final state when starting from\({{\bf{s}}_{\bf{5}}}\), while input 00, 10, 11 ends at a final state when starting from\({{\bf{s}}_{\bf{5}}}\). Thus\({{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}\) are also in the same 2-equivalence class.

3-equivalence class:

The 1-equivalence classes are the same as the 2-equivalence classes and thus the equivalence classes won’t change anymore. This implies that the 3-equivalence classes are also the same as the 1-equivalence classes are same as 2-equivalence classes.

03

Construction of the quotient automaton M of\(\overline {\bf{M}} \).

The 1-equivalence classes are the same as the 2-equivalence classes in part (a) thus the *-equivalence classes are the same as the 1-equivalence classes.

Thus the 5 states of the quotient automaton\(\overline {\bf{M}} \)are then these equivalence classes, which I place within a circle.

Each and I also draw a second circle when the states are the final state in M.

I draw an arrow from state s and t with label a, when there is an arrow from a state, n the equivalence class of s to the state in the equivalence class to t with label a.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let V = {S, A, B, a, b} and T = {a, b}. Determine whether G = (V, T, S, P) is a type 0 grammar but not a type 1 grammar, a type 1 grammar but not a type 2 grammar, or a type 2 grammar but not a type 3 grammar if P, the set of productions, is

\(\begin{array}{*{20}{l}}{{\bf{a) S }} \to {\bf{ aAB, A }} \to {\bf{ Bb, B }} \to {\bf{ \lambda }}{\bf{.}}}\\{{\bf{b) S }} \to {\bf{ aA, A }} \to {\bf{ a, A }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{c) S }} \to {\bf{ABa, AB }} \to {\bf{ a}}{\bf{.}}}\\{{\bf{d) S }} \to {\bf{ ABA, A }} \to {\bf{ aB, B }} \to {\bf{ ab}}{\bf{.}}}\\{{\bf{e) S }} \to {\bf{ bA, A }} \to {\bf{ B, B }} \to {\bf{ a}}{\bf{.}}}\\{{\bf{f ) S }} \to {\bf{ aA, aA }} \to {\bf{ B, B }} \to {\bf{ aA, A }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{g) S }} \to {\bf{ bA, A }} \to {\bf{ b, S }} \to {\bf{ \lambda }}{\bf{.}}}\\{{\bf{h) S }} \to {\bf{ AB, B }} \to {\bf{ aAb, aAb }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{i) S }} \to {\bf{ aA, A }} \to {\bf{ bB, B }} \to {\bf{ b, B }} \to {\bf{ \lambda }}{\bf{.}}}\\{{\bf{j) S }} \to {\bf{ A, A }} \to {\bf{ B, B }} \to {\bf{ \lambda }}{\bf{.}}}\end{array}\)

Find a phrase-structure grammar that generates the set \(\left\{ {{{\bf{0}}^{{{\bf{2}}^{\bf{n}}}}}\mid {\bf{n}} \ge 0} \right\}\).

Let G be the grammar with V = {a, b, c, S}; T = {a, b, c}; starting symbol S; and productions \({\bf{S }} \to {\bf{ abS, S }} \to {\bf{ bcS, S }} \to {\bf{ bbS, S }} \to {\bf{ a, and S }} \to {\bf{ cb}}{\bf{.}}\)Construct derivation trees for

\(\begin{array}{*{20}{l}}{{\bf{a) bcbba}}{\bf{.}}}\\{{\bf{b) bbbcbba}}{\bf{.}}}\\{{\bf{c) bcabbbbbcb}}{\bf{.}}}\end{array}\)

a) Show that the grammar \({{\bf{G}}_{\bf{1}}}\) given in Example 6 generates the set\({\bf{\{ }}{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{m,}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\).

b) Show that the grammar \({{\bf{G}}_{\bf{2}}}\) in Example 6 generates the same set.

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free