Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a deterministic finite-state automaton that recognizes the same language as the nondeterministic finite-state automaton in Exercise 47.

Short Answer

Expert verified

The result is

State01
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{2}}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construction of deterministic finite-state automaton.

From the exercise (47) I determine the language recognized by the machine is

\({\bf{L(M) = \{ 1\} \{ 0\} *}} \cup {\bf{\{ 0\} \{ 0\} *\{ 1\} \{ 0\} *}}\).

Let us consider four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{{\bf{1,}}}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\).

At state \({{\bf{s}}_{\bf{1}}}\),there is a loop with input 0 and an arrow from\({{\bf{s}}_{\bf{1}}}\) to \({{\bf{s}}_{\bf{2}}}\)with input 0. it can remove the arrow from\({{\bf{s}}_{\bf{1}}}\)to\({{\bf{s}}_{\bf{2}}}\), since \({{\bf{s}}_{\bf{2}}}\)is not a final state and it can never leave \({{\bf{s}}_{\bf{2}}}\)again once you reached it. Thus, the loop with input 0 at \({{\bf{s}}_{\bf{1}}}\) is then sufficient.

At state\({{\bf{s}}_{\bf{3}}}\), there is a loop with input 0 and an arrow from\({{\bf{s}}_{\bf{2}}}\)to\({{\bf{s}}_{\bf{3}}}\) with input 2. It can remove the arrow from\({{\bf{s}}_{\bf{3}}}\)to\({{\bf{s}}_{\bf{2}}}\), since \({{\bf{s}}_{\bf{2}}}\)is not a final state and it can never leave \({{\bf{s}}_{\bf{2}}}\)again once you reached it. Thus, the loop with input 0 at \({{\bf{s}}_{\bf{3}}}\) is then sufficient.

Finally,there are no arrows from state\({{\bf{s}}_{\bf{2}}}\)to another state nor loops at\({{\bf{s}}_{\bf{2}}}\). It can then add loops at \({{\bf{s}}_{\bf{2}}}\)with input 0,1, since \({{\bf{s}}_{\bf{2}}}\)is not a final state.

02

Sketch of deterministic finite-state automaton.

The sketch of deterministic finite-state automation can be drawn by four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\). The sketch is

03

Other way of representing in tabular form

State01
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{2}}}\)

Therefore, this is the require construction.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\bf{G = }}\left( {{\bf{V, T, S, P}}} \right)\) be the context-free grammar with \({\bf{V = }}\left\{ {\left( {\bf{,}} \right){\bf{S,A,B}}} \right\}{\bf{, T = }}\left\{ {\left( {\bf{,}} \right)} \right\}\) starting symbol \({\bf{S}}\), and productions

Show that \({\bf{L}}\left( {\bf{G}} \right)\) is the set of all balanced strings of parentheses, defined in the preamble to Supplementary Exercise \(55\) in Chapter \(4\).

Suppose that A is a subset of\({{\bf{V}}^{\bf{*}}}\)where V is an alphabet.Prove or disprove each of these statements.

\(\begin{array}{l}{\bf{a)}}\,\,{\bf{A}} \subseteq {{\bf{A}}^{\bf{2}}}\\{\bf{b)}}\,\,{\bf{if}}\,{\bf{A = }}{{\bf{A}}^{\bf{2}}}{\bf{,then}}\,{\bf{\lambda }} \in {\bf{A}}\\{\bf{c)}}\,\,{\bf{A\{ \lambda \} = A}}\\{\bf{d)}}\,\,{{\bf{(}}{{\bf{A}}^{\bf{*}}}{\bf{)}}^{\bf{*}}}{\bf{ = }}{{\bf{A}}^{\bf{*}}}\\{\bf{e)}}\,\,{{\bf{A}}^{\bf{*}}}{\bf{A = }}{{\bf{A}}^{\bf{*}}}\\{\bf{f)}}\,\,\left| {{{\bf{A}}^{\bf{n}}}} \right|{\bf{ = }}{\left| {\bf{A}} \right|^{\bf{n}}}\end{array}\)

Show that the set \(\left\{ {{{\bf{1}}^{{{\bf{n}}^2}}}\left| {{\bf{n = 0,1,2,}}...} \right.} \right\}\) is not regular using the pumping lemma from Exercise 22.

Find a phrase-structure grammar that generates each of these languages.

\({\bf{a)}}\)the set of bit strings of the form \({{\bf{0}}^{{\bf{2n}}}}{{\bf{1}}^{{\bf{3n}}}}\), where \({\bf{n}}\) is a nonnegative integer

\({\bf{b)}}\)the set of bit strings with twice as many \({\bf{0's}}\) as \({\bf{1's}}\)

\({\bf{c)}}\)the set of bit strings of the form \({{\bf{w}}^{\bf{2}}}\), where \({\bf{w}}\) is a bit string

Draw the state diagrams for the finite-state machines with these state tables.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free