Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a deterministic finite-state automaton that recognizes the same language as the nondeterministic finite-state automaton in Exercise 46.

Short Answer

Expert verified

The result is

State01
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)

Step by step solution

01

Construction of deterministic finite-state automaton.

From the exercise (46) it determines the language recognized by the machine is

\({\bf{L(M) = \{ 100,101\} *}} \cup {\bf{\{ 1\} \{ 001,011\} *}}\).

Let us consider four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{{\bf{1,}}}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\).

Let’s start with the state be \({{\bf{s}}_{\bf{0}}}\) there is no arrow with input 0. it then creates a non-final state\({{\bf{s}}_{\bf{3}}}\), in whichitsends the input 0 towards. Once itarrives at\({{\bf{s}}_{\bf{3}}}\),it will never leave the state again.

At state\({{\bf{s}}_{\bf{1}}}\), there is no arrow with input 1. Itdraws the arrow with input 1 from \({{\bf{s}}_{\bf{1}}}\)to the non-final state\({{\bf{s}}_{\bf{3}}}\), such that none of these strings will be recognized.

02

Sketch of deterministic finite-state automaton

The sketch of deterministic finite-state automation can be drawn by four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\). The sketch is

03

Other way of representing in tabular form.

State01
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)

Therefore, this is the require construction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Describe how productions for a grammar in extended Backus–Naur form can be translated into a set of productions for the grammar in Backus–Naur form.

This is the Backus–Naur form that describes the syntax of expressions in postfix (or reverse Polish) notation.

\(\begin{array}{c}\left\langle {{\bf{expression}}} \right\rangle {\bf{ :: = }}\left\langle {{\bf{term}}} \right\rangle {\bf{|}}\left\langle {{\bf{term}}} \right\rangle \left\langle {{\bf{term}}} \right\rangle \left\langle {{\bf{addOperator}}} \right\rangle \\{\bf{ }}\left\langle {{\bf{addOperator}}} \right\rangle {\bf{:: = + | - }}\\\left\langle {{\bf{term}}} \right\rangle {\bf{:: = }}\left\langle {{\bf{factor}}} \right\rangle {\bf{|}}\left\langle {{\bf{factor}}} \right\rangle \left\langle {{\bf{factor}}} \right\rangle \left\langle {{\bf{mulOperator}}} \right\rangle {\bf{ }}\\\left\langle {{\bf{mulOperator}}} \right\rangle {\bf{:: = *|/}}\\\left\langle {{\bf{factor}}} \right\rangle {\bf{:: = }}\left\langle {{\bf{identifier}}} \right\rangle {\bf{|}}\left\langle {{\bf{expression }}} \right\rangle \\\left\langle {{\bf{identifier}}} \right\rangle {\bf{:: = a }}\left| {{\bf{ b }}} \right|...{\bf{| z}}\end{array}\)

Use Backus–Naur form to describe the syntax of expressions in infix notation, where the set of operators and identifiers is the same as in the BNF for postfix expressions given in the preamble to Exercise 39, but parentheses must surround expressions being used as factors.

a)Define a phrase-structure grammar.

b)What does it mean for a string to be derivable from a string wby a phrase-structure grammar G?

Construct a Turing machine that recognizes the set of all bit strings that contain an even number of \({\bf{1's}}\).

In Exercises 16–22 find the language recognized by the given deterministic finite-state automaton

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free