Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a deterministic finite-state automaton that recognizes the same language as the nondeterministic finite-state automaton in Exercise 46.

Short Answer

Expert verified

The result is

State01
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construction of deterministic finite-state automaton.

From the exercise (46) it determines the language recognized by the machine is

\({\bf{L(M) = \{ 100,101\} *}} \cup {\bf{\{ 1\} \{ 001,011\} *}}\).

Let us consider four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{{\bf{1,}}}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\).

Let’s start with the state be \({{\bf{s}}_{\bf{0}}}\) there is no arrow with input 0. it then creates a non-final state\({{\bf{s}}_{\bf{3}}}\), in whichitsends the input 0 towards. Once itarrives at\({{\bf{s}}_{\bf{3}}}\),it will never leave the state again.

At state\({{\bf{s}}_{\bf{1}}}\), there is no arrow with input 1. Itdraws the arrow with input 1 from \({{\bf{s}}_{\bf{1}}}\)to the non-final state\({{\bf{s}}_{\bf{3}}}\), such that none of these strings will be recognized.

02

Sketch of deterministic finite-state automaton

The sketch of deterministic finite-state automation can be drawn by four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\). The sketch is

03

Other way of representing in tabular form.

State01
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)

Therefore, this is the require construction.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free