Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a deterministic finite-state automaton that recognizes the same language as the nondeterministic finitestate automaton in Exercise 45.

Short Answer

Expert verified

The result is

State01
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{4}}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construction of deterministic finite-state automaton.

From the exercise (45) I determine the language recognized by the machine is

\({\bf{L(M) = \{ 0\} \{ 1\} *}} \cup {\bf{\{ 0\} \{ 0\} *\{ 1\} \{ 1\} *}}\).

Let us consider five states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{{\bf{1,}}}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\).

Let start with the state be \({{\bf{s}}_{\bf{0}}}\).Since the empty string in the set S, is not a final state.

If the input starts with a 1, then it remains at state\({{\bf{s}}_{\bf{1}}}\). If the next input is followed by a 0, then it moves on to another non-final state\({{\bf{s}}_{\bf{2}}}\), and if the input contains another 1,then itmoves on to the final state\({{\bf{s}}_{\bf{3}}}\)elseit remains at the non-final state\({{\bf{s}}_{\bf{2}}}\).

If the input starts with a 1, then remains at the state\({{\bf{s}}_{\bf{3}}}\)else it moves on to the non-final state\({{\bf{s}}_{\bf{4}}}\).

If the input starts with a 1, then it moves on to a non-finalstate\({{\bf{s}}_{\bf{4}}}\)and then I never leave at the state \({{\bf{s}}_{\bf{4}}}\)again.

02

Sketch of deterministic finite-state automaton.

The sketch of deterministic finite-state automation can be drawn by fivestates \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{{\bf{1,}}}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\). The sketch is

03

Other way of representing in tabular form.

State01
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{4}}}\)

Therefore, this is the require construction.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free