Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a deterministic finite-state automaton that recognizes the same language as the nondeterministic finite state automaton in Exercise 44.

Short Answer

Expert verified

The result is

State01
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{5}}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construction of deterministic finite-state automaton.

From the exercise (44) It determine the language recognized by the machine is

\({\bf{L(M) = \{ \lambda ,0,1\} }} \cup {\bf{\{ 1\} \{ 1\} *\{ 0\} }}\).

Let us consider six states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{{\bf{1,}}}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}\).

Let start with the state be \({{\bf{s}}_{\bf{0}}}\).Since the empty string in the set S, is a final state.

If the input starts with a 0, then it moves on to the final state\({{\bf{s}}_{\bf{1}}}\). If there are any digitsfollowing the 0, then it moves on to anothernon-final state\({{\bf{s}}_{\bf{2}}}\), and once it arrived \({{\bf{s}}_{\bf{2}}}\) itremainsin state \({{\bf{s}}_{\bf{2}}}\).

If the input starts with a 1, then it moves on to the final state\({{\bf{s}}_{\bf{3}}}\). If the next input is followed by a 0, then it moves on to another final state. If there are more digits after the 0, then it moves on to the non-final state\({{\bf{s}}_{\bf{2}}}\).

If the next digit was a 1 state \({{\bf{s}}_{\bf{3}}}\), then it moves on to a non-final state\({{\bf{s}}_{\bf{5}}}\). If the next input is a 1, then it remains at \({{\bf{s}}_{\bf{5}}}\). If the next input is a 0, then it moves on to the final state\({{\bf{s}}_{\bf{4}}}\).

02

Sketch of deterministic finite-state automaton.

The sketch of deterministic finite-state automation can be drawn by sixstates \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{{\bf{1,}}}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}\). The sketch is

03

Other way of representing in tabular form.

State01
\({{\bf{s}}_{\bf{0}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{5}}}\)

Therefore, this is the require construction.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Give production rules in Backusโ€“Naur form that generate all identifiers in the C programming language. In โ€˜Cโ€™ an identifier starts with a letter or an underscore (_) that is followed by one or more lowercase letters, uppercase letters, underscores, and digits.

Several extensions to Backusโ€“Naur form are commonly used to define phrase-structure grammars. In one such extension, a question mark (?) indicates that the symbol, or group of symbols inside parentheses, to its left can appear zero or once (that is, it is optional), an asterisk (*) indicates that the symbol to its left can appear zero or more times, and a plus (+) indicates that the symbol to its left can appear one or more times. These extensions are part of extended Backusโ€“Naur form (EBNF), and the symbols?, *, and + are called metacharacters. In EBNF the brackets used to denote nonterminal are usually not shown.

In Exercises 16โ€“22 find the language recognized by the given deterministic finite-state automaton

Describe the set of strings defined by each of these sets of productions in EBNF.

\(\begin{array}{c}\left( {\bf{a}} \right){\bf{string :: = L + D?L + }}\\{\bf{L :: = a }}\left| {{\bf{ b }}} \right|{\bf{ c }}\\{\bf{D :: = 0 | 1}}\\\left( {\bf{b}} \right){\bf{string :: = signD + |D + }}\\{\bf{sign :: = + | - }}\\{\bf{D :: = 0 | 1|2|3|4|5|6|7|8|9}}\\\left( {\bf{c}} \right){\bf{string :: = L*}}\left( {{\bf{D + }}} \right){\bf{?L* }}\\{\bf{L :: = x |y }}\\{\bf{D :: = 0 | 1}}\end{array}\)

For each of these strings, determine whether it is generated by the grammar given for postfix notation. If it is, find the steps used to generate the string.

\(\begin{array}{l}{\bf{a) abc* + }}\\{\bf{b) xy + + }}\\{\bf{c) xy - z*}}\\{\bf{d) wxyz - */ }}\\{\bf{e) ade - *}}\end{array}\)

let \({{\bf{G}}_{\bf{1}}}\) and \({{\bf{G}}_{\bf{2}}}\) be context-free grammars, generating the language\({\bf{L}}\left( {{{\bf{G}}_{\bf{1}}}} \right)\) and \({\bf{L}}\left( {{{\bf{G}}_{\bf{2}}}} \right)\), respectively. Show that there is a context-free grammar generating each of these sets.

a) \({\bf{L}}\left( {{{\bf{G}}_{\bf{1}}}} \right){\bf{UL}}\left( {{{\bf{G}}_{\bf{2}}}} \right)\)

b) \({\bf{L}}\left( {{{\bf{G}}_{\bf{1}}}} \right){\bf{L}}\left( {{{\bf{G}}_{\bf{2}}}} \right)\)

c) \({\bf{L}}{\left( {{{\bf{G}}_{\bf{1}}}} \right)^{\bf{*}}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free