Chapter 13: Q50E (page 877)
Find a deterministic finite-state automaton that recognizes the same language as the nondeterministic finite state automaton in Exercise 43.
Short Answer
The result is
State | 0 | 1 |
\({{\bf{s}}_{\bf{0}}}\) | \({{\bf{s}}_{\bf{1}}}\) | \({{\bf{s}}_{\bf{4}}}\) |
\({{\bf{s}}_{\bf{1}}}\) | \({{\bf{s}}_{\bf{3}}}\) | \({{\bf{s}}_{\bf{2}}}\) |
\({{\bf{s}}_{\bf{2}}}\) | \({{\bf{s}}_{\bf{3}}}\) | \({{\bf{s}}_{\bf{3}}}\) |
\({{\bf{s}}_{\bf{3}}}\) | \({{\bf{s}}_{\bf{3}}}\) | \({{\bf{s}}_{\bf{3}}}\) |
\({{\bf{s}}_{\bf{4}}}\) | \({{\bf{s}}_{\bf{3}}}\) | \({{\bf{s}}_{\bf{2}}}\) |