Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that these equalities hold.

a) \({{\bf{\{ \lambda \} }}^{\bf{*}}}{\bf{ = \{ \lambda \} }}\)

b) \({\bf{(A*)* = A*}}\) for every set of strings A.

Short Answer

Expert verified

By the following steps, the equalities hold.

a)\({{\rm{\{ }}\lambda {\rm{\} }}^*} = {\rm{\{ }}\lambda {\rm{\} }}\)

b)\({\rm{(}}A*{\rm{)}}* = A*\) for every set of strings A.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition.

Here AB represents the concatenation of A and B.

\(AB = {\rm{\{ }}xy|\,x \in A\,{\rm{and}}\,y \in B{\rm{\} }}\)

Kleene closure of A set consisting of the concatenation of any number of strings from A \({{\bf{A}}^{\bf{*}}}{\bf{ = }}\bigcup\limits_{k = 0}^{ + \infty } {{{\bf{A}}^{\bf{k}}}} \)

02

Proof\({{\bf{\{ \lambda \} }}^{\bf{*}}}{\bf{ = \{ \lambda \} }}\).

(a)

\({{\rm{\{ }}\lambda {\rm{\} }}^2}\)Represent the concatenation of \({\rm{\{ }}\lambda {\rm{\} }}\)and \({\rm{\{ }}\lambda {\rm{\} }}\). Thus

\({{\rm{\{ }}\lambda {\rm{\} }}^2} = \left\{ {xy|x \in {\rm{\{ }}\lambda {\rm{\} }}\,{\rm{and}}\,y \in {\rm{\{ }}\lambda {\rm{\} }} = {\rm{\{ }}\lambda \lambda {\rm{\} }} = {\rm{\{ }}\lambda {\rm{\} }}} \right\}\)

Similarly, we get \({{\rm{\{ }}\lambda {\rm{\} }}^n} = {{\rm{\{ }}\lambda {\rm{\} }}^{n - 1}}{\rm{\{ }}\lambda {\rm{\} }} = {\rm{\{ }}\lambda \lambda {\rm{\} }} = {{\rm{\{ }}\lambda {\rm{\} }}^2} = {\rm{\{ }}\lambda {\rm{\} }}\,form = 2,3,....\)

Using the definition of the Kleene closure, then

\({{\rm{\{ }}\lambda {\rm{\} }}^*} = \bigcup\limits_{k = 0}^{ + \infty } {{\lambda ^k}} = \bigcup\limits_{k = 0}^{ + \infty } \lambda = {\rm{\{ }}\lambda {\rm{\} }}\)

Hence, the equalities hold \({{\rm{\{ }}\lambda {\rm{\} }}^*} = {\rm{\{ }}\lambda {\rm{\} }}\)

03

Proof of \({{\bf{A}}^{\bf{*}}}{\bf{ = }}\bigcup\limits_{k = 0}^{ + \infty } {{{\bf{A}}^{\bf{k}}}} \).

(b)

Now, by the definition of the Kleene closure

\({{\rm{(}}{A^*}{\rm{)}}^*} = \bigcup\limits_{k = 0}^{ + \infty } {{{{\rm{(}}{A^*}{\rm{)}}}^k}} \)

\({{\rm{(}}{A^*}{\rm{)}}^2}\)Represent the concatenation of\({A^*}\)and\({A^*}\) Thus

\({{\rm{(}}{A^*}{\rm{)}}^2} = {\rm{\{ }}xy|x \in A\,and\,y \in {A^*}{\rm{\} }} = {A^*}\)

Similarly,\({{\rm{(}}{A^*}{\rm{)}}^n} = {{\rm{(}}{A^*}{\rm{)}}^{n - 1}}{A^*} = {A^*}{A^*} = {{\rm{(}}{A^*}{\rm{)}}^2} = {A^*}form = 2,3,....\)

Using the definition of the Kleene closure, then

\({\rm{(}}A*{\rm{)}}* = \bigcup\limits_{k = 0}^{ + \infty } {{{{\rm{(}}{A^*}{\rm{)}}}^k}} = \bigcup\limits_{k = 0}^{ + \infty } {{\rm{(}}{A^*}{\rm{)}}} A*\)

Therefore,\({\rm{(}}A*{\rm{)}}* = A*\)for every set of strings A.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free