Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

Short Answer

Expert verified

The result is\({\bf{L(M) = \{ 1\} *}} \cup {\bf{\{ 0\} *\{ 0,1\} }}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

According to the figure

Here the given figure contains six states\({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}},{{\bf{s}}_{\bf{5}}}\).

If there is an arrow from \({{\bf{s}}_{\bf{i}}}\) to \({{\bf{s}}_{\bf{j}}}\) with label x , then we write down in row \({{\bf{s}}_{\bf{j}}}\)and in the row \({{\bf{s}}_{\bf{i}}}\)and in column x of the following table.

State
0
1
\({{\bf{s}}_{\bf{o}}}\)
\({{\bf{s}}_{\bf{1}}}\),\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{1}}}\),\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{2}}}\),\({{\bf{s}}_{\bf{3}}}\),\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{4}}}\)
\({{\bf{s}}_{\bf{3}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{5}}}\)
\({{\bf{s}}_{\bf{5}}}\)

\({{\bf{s}}_{\bf{o}}}\) is marked as the start state.

02

Find the final result

The start state\({{\bf{s}}_{\bf{o}}}\)is also the final state,which implies that the empty string \({\bf{\lambda }}\)is present in the recognized language.

\({\bf{\lambda }} \subseteq {\bf{L(M)}}\)

To Move from \({{\bf{s}}_{\bf{o}}}\) the final state\({{\bf{s}}_{\bf{1}}}\), I require that the input is 0 or 1. Thus the string 0 and 1 will be in recognized language. Moreover, there is also a loop at \({{\bf{s}}_{\bf{1}}}\)with input 1, which means that the number can end with any sequence of 1’s as well.

\({\bf{\{ }}0,{\bf{1\} \{ }}1{\bf{\} *}} \subseteq {\bf{L(M)}}\)

To Move from \({{\bf{s}}_{\bf{o}}}\) the final state\({{\bf{s}}_{\bf{2}}}\), I require that the input is 0. Moreover, there is also a loop at \({{\bf{s}}_{\bf{1}}}\)with input 0, which means that the number can end with any sequence of 0’s and 1’s as well.

\({\bf{\{ 0\} \{ }}0,{\bf{1\} *}} \subseteq {\bf{L(M)}}\)

To move from\({{\bf{s}}_{\bf{2}}}\)to the final state\({{\bf{s}}_{\bf{4}}}\), I require that the input is 0. Thus, any string in followed by a 0 is also in the subset.

\({\bf{\{ 0\} \{ 0,1\} *\{ 0\} }} \subseteq {\bf{L(M)}}\)

Therefore, the language generated by the machine is

\(\begin{array}{l}{\bf{L(M) = \{ \lambda \} }} \cup {\bf{\{ 0,1\} \{ 1\} *}} \cup {\bf{\{ 0\} \{ 0,1\} *}} \cup {\bf{\{ 0\} \{ 0,1\} *\{ 0\} }}\\{\bf{L(M) = \{ 1\} *}} \cup {\bf{\{ 0)\{ }}0,{\bf{1\} *}}\end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

let \({{\bf{G}}_{\bf{1}}}\) and \({{\bf{G}}_{\bf{2}}}\) be context-free grammars, generating the language\({\bf{L}}\left( {{{\bf{G}}_{\bf{1}}}} \right)\) and \({\bf{L}}\left( {{{\bf{G}}_{\bf{2}}}} \right)\), respectively. Show that there is a context-free grammar generating each of these sets.

a) \({\bf{L}}\left( {{{\bf{G}}_{\bf{1}}}} \right){\bf{UL}}\left( {{{\bf{G}}_{\bf{2}}}} \right)\)

b) \({\bf{L}}\left( {{{\bf{G}}_{\bf{1}}}} \right){\bf{L}}\left( {{{\bf{G}}_{\bf{2}}}} \right)\)

c) \({\bf{L}}{\left( {{{\bf{G}}_{\bf{1}}}} \right)^{\bf{*}}}\)

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain the string 101.

A context-free grammar is ambiguous if there is a word in \({\bf{L(G)}}\) with two derivations that produce different derivation trees, considered as ordered, rooted trees.

Show that the grammar \({\bf{G = }}\left( {{\bf{V, T, S, P}}} \right)\) with \({\bf{V = }}\left\{ {{\bf{0, S}}} \right\}{\bf{,T = }}\left\{ {\bf{0}} \right\}\), starting state \({\bf{S}}\), and productions \({\bf{S}} \to {\bf{0S,S}} \to {\bf{S0}}\), and \({\bf{S}} \to 0\) is ambiguous by constructing two different derivation trees for \({{\bf{0}}^{\bf{3}}}\).

a) Construct a derivation of \({{\bf{0}}^{\bf{2}}}{{\bf{1}}^{\bf{4}}}\) using the grammar \({{\bf{G}}_{\bf{1}}}\) in Example 6.

b) Construct a derivation of \({{\bf{0}}^{\bf{2}}}{{\bf{1}}^{\bf{4}}}\) using the grammar \({{\bf{G}}_{\bf{2}}}\) in Example 6.

In Exercises 16–22 find the language recognized by the given deterministic finite-state automaton

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free