Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

Short Answer

Expert verified

The result is\({\bf{L(M) = \{ 100,101\} *}} \cup {\bf{\{ 1\} \{ 001,011\} *}}\).

Step by step solution

01

According to the figure.

Here the given figure contains three states \({{\bf{s}}_{\bf{o}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}\).

If there is an arrow from \({{\bf{s}}_{\bf{i}}}\) to \({{\bf{s}}_{\bf{j}}}\) with label x, then we write down in row \({{\bf{s}}_{\bf{j}}}\)and in the row \({{\bf{s}}_{\bf{i}}}\)and in column x of the following table.

State
0
1
\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{1}}}\)
\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{2}}}\)
\({{\bf{s}}_{\bf{o}}}\)
\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{o}}}\) is marked as the start state.

02

Find the final result.

The start state\({{\bf{s}}_{\bf{o}}}\)is also the final state, which implies that the empty strings \({\bf{\lambda }}\) is present in the recognized language.

\({\bf{\lambda }} \in {\bf{L(M)}}\)

To Move from \({{\bf{s}}_{\bf{o}}}\) the final state \({{\bf{s}}_{\bf{1}}}\)(directly), I require that the input is 1. Thus, the string 1 will be in recognized language.

\({\bf{\{ 1\} }} \in {\bf{L(M)}}\)

To move from\({{\bf{s}}_{\bf{o}}}\)to\({{\bf{s}}_{\bf{2}}}\), the input has to be a 0. The input needs to start with 10. To then move from \({{\bf{s}}_{\bf{2}}}\)to \({{\bf{s}}_{\bf{o}}}\), the input can be anything and thus the strings need to start with 1000 or 101. Since I can execute the circuit from \({{\bf{s}}_{\bf{o}}}\)to\({{\bf{s}}_{\bf{o}}}\) as many times as possible.

\({\bf{\{ 1}}00,{\bf{1}}01{\bf{\} *}} \subseteq {\bf{L(M)}}\)

To move from\({{\bf{s}}_{\bf{1}}}\)to\({{\bf{s}}_{\bf{2}}}\), the input has to be a 10. To then move from \({{\bf{s}}_{\bf{2}}}\)to \({{\bf{s}}_{\bf{o}}}\), the input can be anything and thus the strings need to start with 1000 or 101. To move from\({{\bf{s}}_{\bf{o}}}\)to \({{\bf{s}}_{\bf{1}}}\)again, I require that the input 1 and thus the strings need to start with 1001 or 1011. Since I can execute the circuit from \({{\bf{s}}_{\bf{1}}}\)to \({{\bf{s}}_{\bf{1}}}\)as many times as possible, the recognized language contains all strings starting with a 1,followed with as many repetitions of 001 or 011 as possible.

\({\bf{\{ 1\} \{ }}00{\bf{1}},011{\bf{\} *}} \subseteq {\bf{L(M)}}\)

Therefore, the language generated by the machine is

\(\begin{array}{l}{\bf{L(M) = \{ \lambda }},1{\bf{\} }} \cup {\bf{\{ }}10{\bf{0\} \{ 1}}01{\bf{\} *}} \cup {\bf{\{ 1\} \{ 001,011\} }}\\{\bf{L(M) = \{ 100,101\} *}} \cup {\bf{\{ 1\} \{ 001,011\} *}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free