Chapter 13: Q43E (page 877)
In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.
Short Answer
The result is\({\bf{L(M) = \{ 0,01,11\} }}\).
Chapter 13: Q43E (page 877)
In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.
The result is\({\bf{L(M) = \{ 0,01,11\} }}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeSuppose that A is a subset of\({{\bf{V}}^{\bf{*}}}\)where V is an alphabet.Prove or disprove each of these statements.
\(\begin{array}{l}{\bf{a)}}\,\,{\bf{A}} \subseteq {{\bf{A}}^{\bf{2}}}\\{\bf{b)}}\,\,{\bf{if}}\,{\bf{A = }}{{\bf{A}}^{\bf{2}}}{\bf{,then}}\,{\bf{\lambda }} \in {\bf{A}}\\{\bf{c)}}\,\,{\bf{A\{ \lambda \} = A}}\\{\bf{d)}}\,\,{{\bf{(}}{{\bf{A}}^{\bf{*}}}{\bf{)}}^{\bf{*}}}{\bf{ = }}{{\bf{A}}^{\bf{*}}}\\{\bf{e)}}\,\,{{\bf{A}}^{\bf{*}}}{\bf{A = }}{{\bf{A}}^{\bf{*}}}\\{\bf{f)}}\,\,\left| {{{\bf{A}}^{\bf{n}}}} \right|{\bf{ = }}{\left| {\bf{A}} \right|^{\bf{n}}}\end{array}\)
a) Show that the grammar \({{\bf{G}}_{\bf{1}}}\) given in Example 6 generates the set\({\bf{\{ }}{{\bf{0}}^{\bf{m}}}{{\bf{1}}^{\bf{n}}}{\bf{|}}\,{\bf{m,}}\,{\bf{n = 0,}}\,{\bf{1,}}\,{\bf{2,}}\,...{\bf{\} }}\).
b) Show that the grammar \({{\bf{G}}_{\bf{2}}}\) in Example 6 generates the same set.
Find all pairs of sets of strings A and B for which AB= {10, 111, 1010, 1000, 10111, 101000}.
Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain the string 101.
Use Backus–Naur form to describe the syntax of expressions in infix notation, where the set of operators and identifiers is the same as in the BNF for postfix expressions given in the preamble to Exercise 39, but parentheses must surround expressions being used as factors.
What do you think about this solution?
We value your feedback to improve our textbook solutions.