Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the procedure you described in Exercise 39 and the finite-state automaton you constructed in Exercise 29 to find a deterministic finite-state automaton that recognizes the set of all bit strings that do not contain three consecutive 1s.

Short Answer

Expert verified

The result is

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

Step by step solution

01

Construction of deterministic finite-state automaton.

Let us consider four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{{\bf{1,}}}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\).

Let start with the state be \({{\bf{s}}_{\bf{0}}}\).

The state \({{\bf{s}}_{\bf{1}}}\) shows the last digit was 1.

The state \({{\bf{s}}_{\bf{2}}}\) has the last two digits were 11.

The state \({{\bf{s}}_{\bf{3}}}\) gives that the string contained 111.

It moves from \({{\bf{s}}_{\bf{0}}}\)to \({{\bf{s}}_{\bf{1}}}\), if it comes to cross a 1, else it will remain at\({{\bf{s}}_{\bf{0}}}\).

It moves from \({{\bf{s}}_{\bf{1}}}\)to\({{\bf{s}}_{\bf{2}}}\), if there is a second 1, else it move back at\({{\bf{s}}_{\bf{0}}}\).

It moves from \({{\bf{s}}_{\bf{2}}}\) to\({{\bf{s}}_{\bf{3}}}\) if there is a third 1, else it move back to \({{\bf{s}}_{\bf{0}}}\).

Once it arrived at \({{\bf{s}}_{\bf{3}}}\), it will remain there.

In the exercise (41) the determine the bit string containing consecutive three 1’s.\({{\bf{s}}_{\bf{3}}}\) was the only final state. In this exercise to determine the bit string not containing consecutive 1’s. I then require that \({{\bf{s}}_{\bf{3}}}\)is not a final state, but \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}\)and\({{\bf{s}}_{\bf{2}}}\) are final state.

02

Sketch of deterministic finite-state automaton.

The sketch of deterministic finite-state automation can be drawn by four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\). The sketch is

03

Other way of representing in tabular form.

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

Therefore, this is the require construction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let V be an alphabet, and let A and B be subsets of \({\bf{V*}}\) with A⊆B. Show that \({\bf{A*}}\)⊆B*.

Use Backus–Naur form to describe the syntax of expressions in infix notation, where the set of operators and identifiers is the same as in the BNF for postfix expressions given in the preamble to Exercise 39, but parentheses must surround expressions being used as factors.

Let V = {S, A, B, a, b} and T = {a, b}. Find the language generated by the grammar (V, T, S, P) when theset P of productions consists of

\(\begin{array}{*{20}{l}}{{\bf{a) S }} \to {\bf{ AB, A }} \to {\bf{ ab, B }} \to {\bf{ bb}}{\bf{.}}}\\{{\bf{b) S }} \to {\bf{ AB, S }} \to {\bf{ aA, A }} \to {\bf{ a, B }} \to {\bf{ ba}}{\bf{.}}}\\{{\bf{c) S }} \to {\bf{ AB, S }} \to {\bf{ AA, A }} \to {\bf{ aB, A }} \to {\bf{ ab, B }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{d) S }} \to {\bf{ AA, S }} \to {\bf{ B, A }} \to {\bf{ aaA, A }} \to {\bf{ aa, B }} \to {\bf{ bB, B }} \to {\bf{ b}}{\bf{.}}}\\{{\bf{e) S }} \to {\bf{ AB, A }} \to {\bf{ aAb, B }} \to {\bf{ bBa, A }} \to {\bf{ \lambda , B }} \to {\bf{ \lambda }}{\bf{.}}}\end{array}\)

Give production rules in extended Backus–Naur form that generate a sandwich if a sandwich consists of a lower slice of bread; mustard or mayonnaise; optional lettuce; an optional slice of tomato; one or more slices of either turkey, chicken, or roast beef (in any combination); optionally some number of slices of cheese; and a top slice of bread.

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain the string 101.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free