Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the procedure you described in Exercise 39 and the finite-state automata you constructed in Exercise 25 to find a deterministic finite-state automaton that recognizes the set of all bit strings that do not contain the string 101.

Short Answer

Expert verified

The result is

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construction of deterministic finite-state automaton.

Let us consider four states\({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{{\bf{1,}}}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\).

Let start with the state be \({{\bf{s}}_{\bf{0}}}\).

The state \({{\bf{s}}_{\bf{1}}}\)shows the last digit was 1.

The state \({{\bf{s}}_{\bf{2}}}\) has the last two digits were 10.

The state \({{\bf{s}}_{\bf{3}}}\) gives that the string contained 101.

It moves from \({{\bf{s}}_{\bf{0}}}\)to \({{\bf{s}}_{\bf{1}}}\), if it comes to cross a 1, else It remains at\({{\bf{s}}_{\bf{0}}}\).

It moves from \({{\bf{s}}_{\bf{1}}}\)to\({{\bf{s}}_{\bf{2}}}\), if there is a 0, else It remain at \({{\bf{s}}_{\bf{1}}}\).

It moves from \({{\bf{s}}_{\bf{2}}}\) to\({{\bf{s}}_{\bf{3}}}\) if there is a 1, else It move back to \({{\bf{s}}_{\bf{0}}}\).

Once it arrived at \({{\bf{s}}_{\bf{3}}}\), It will remain there.

In exercise (40) they determine that bit string 101,\({{\bf{s}}_{\bf{3}}}\) was the only final state. In this exercise to determine the bit string not containing 101, it then require that \({{\bf{s}}_{\bf{3}}}\)is not a final state, but \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}\)and\({{\bf{s}}_{\bf{2}}}\) are final state.

02

Sketch of deterministic finite-state automaton.

The sketch of deterministic finite-state automation can be drawn by four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\). The sketch is

03

Other way of representing in tabular form.

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

Therefore, this is the require construction.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free