Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a finite-state automaton with four states that recognizes the set of bit strings containing an even number of 1s and an odd number of 0s.

Short Answer

Expert verified

The result is

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construction of deterministic finite-state automaton.

Let us consider four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{{\bf{1,}}}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\).

Let start with the state be \({{\bf{s}}_{\bf{0}}}\).Since the empty string is not the set S and is not a final state.

The state \({{\bf{s}}_{\bf{0}}}\) has that there were an even number of 0’s and 1’s in the previous digit.

The state \({{\bf{s}}_{\bf{1}}}\) shows that there were an even number of 0’s and an odd number of 1’s in the previous digits.

The state \({{\bf{s}}_{\bf{2}}}\) has the odd numbers of 0’s and an even number of 1’s in the previous digits.

The state \({{\bf{s}}_{\bf{3}}}\) gives that an odd number of 0’s and an odd number of 1’s in the previous digits.

It moves from \({{\bf{s}}_{\bf{0}}}\) to \({{\bf{s}}_{\bf{1}}}\), if the input is a 1 and moves from \({{\bf{s}}_{\bf{0}}}\) to\({{\bf{s}}_{\bf{2}}}\) if the input is a 0.

It moves from \({{\bf{s}}_{\bf{1}}}\) to \({{\bf{s}}_{\bf{0}}}\), if the input is 1 and move from \({{\bf{s}}_{\bf{1}}}\)to\({{\bf{s}}_{\bf{3}}}\) if the input is a 0.

It moves from \({{\bf{s}}_{\bf{2}}}\) to \({{\bf{s}}_{\bf{3}}}\), if the input is 1 and move from\({{\bf{s}}_{\bf{2}}}\) to\({{\bf{s}}_{\bf{0}}}\)if the input is a 0.

It moves from \({{\bf{s}}_{\bf{3}}}\) to \({{\bf{s}}_{\bf{2}}}\), if the input is 1 and moves from\({{\bf{s}}_{\bf{3}}}\)to \({{\bf{s}}_{\bf{1}}}\)if the input is a 0.

If the input is 1, then it remains at the current state.

02

Sketch of deterministic finite-state automaton.

The sketch of deterministic finite-state automation can be drawn by four states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\). The sketch is

03

Other way of representing in tabular form.

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

Therefore, this is the require construction.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free