Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

a) Construct a phrase-structure grammar for the set of all fractions of the form a/b, where a is a signed integer in decimal notation and b is a positive integer.

b) What is the Backus–Naur form for this grammar?

c) Construct a derivation tree for +311/17 in this grammar.

Short Answer

Expert verified

a) The productions are, in addition to the productions given above for a signed integer and a positive integer:

Sà< signed integer >< slash >< positive integer > < slash >à/.

b) The Backus–Naur form of the grammar G is,

\(\begin{array}{l}S{\bf{ }}:: = < {\rm{ signed integer}}{\bf{ }} > < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\rm{ positive integer}}{\bf{ }} > {\bf{ }}\\ < {\bf{ }}{\rm{slash}}{\bf{ }} > :: = {\bf{ }}/{\bf{ }}\\ < {\bf{ }}{\rm{positive integer}}{\bf{ }} > :: = < {\bf{ }}{\rm{positive digit}}{\bf{ }} > < {\rm{ other digits}} > {\bf{ }}\\ < {\rm{other digits}}{\bf{ }} > :{\bf{ }} = < {\bf{ }}{\rm{integer}}{\bf{ }} > |\lambda {\bf{ }}\\ < {\rm{signed integer}}{\bf{ }} > :: = < {\bf{ }}{\rm{sign}}{\bf{ }} > < {\bf{ }}{\rm{integer}}{\bf{ }} > {\bf{ }}\\ < {\rm{ sign}}{\bf{ }} > :: = - I + {\bf{ }}\\ < {\bf{ }}{\rm{int eger}}{\bf{ }} > :: = < {\bf{ }}{\rm{integer}}{\bf{ }} > < {\bf{ }}{\rm{digit}}{\bf{ }} > l < {\bf{ }}{\rm{digit}}{\bf{ }} > {\bf{ }}\\ < {\rm{digit}}{\bf{ }} > :: = < {\bf{ }}{\rm{positive digit}}{\bf{ }} > |0{\bf{ }}\\ < {\bf{ }}{\rm{positive digit}}{\bf{ }} > :: = 0|1|2|3|4|5|6|7|8|9{\rm{ }}\end{array}\)

c) The derivation tree for +311/17 is,


Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

About Backus-Nour form

A type-2 grammar is designated by the notation known as Backus-Naur form.

The left side of a type 2 grammar's production is one non-terminal symbol.

It can merge all of the productions into a single statement using the same left non-terminal symbolàrather than listing each one separately in production,

It use the symbol:: =

Enclose all non-terminal symbols in brackets <>, and it lists all right-hand sides of productions in the same statement, separating them by bars.

02

The phrase structure grammar expresses fractions of the form a/b, where a is a signed decimal integer and a positive decimal integer.

(a)Start by defining the grammar for a signed integer and a positive integer.

A positive digit is defined as:

\(\begin{array}{c} < {\rm{positive digit}} > \, \to 1\\ < {\rm{positive digit}} > \, \to 2\\ < {\rm{positive digit}} > \, \to 3\\ < {\rm{positive digit}} > \, \to 4\\ < {\rm{positive digit}} > \, \to 5\\ < {\rm{positive digit}} > \, \to 6\\ < {\rm{positive digit}} > \, \to 7\\ < {\rm{positive digit}} > \, \to 8\\ < {\rm{positive digit}} > \, \to 9\end{array}\)

Adding a production for the digit 0 will give the productions for a digit:

<digit > \(\to\) < positive digit >

<digit > \(\to\) 0

An integer is a sequence of digits, so the productions for an integer will be:

< integer > \(\to\) < integer >< digit >

< integer > \(\to\) < digit >

A signed integer can be produced from an integer with the following productions:

<signed integer> \(\to\) <sign><integer>

<sign> \(\to\) -

<sign> \(\to\) +

While for a positive integer, the productions just require adding a few productions to the productions for an integer, that is:

<positive integer> \(\to\) < positive digit >< other digits >

<other digits> \(\to\) < integer >

<other digits > \(\to\) \(\lambda \)

Using the productions for an integer and a positive integer, the phrase structure grammar \(G{\bf{ }} = {\bf{ }}\left( {V,{\bf{ }}T,{\bf{ }}S,{\bf{ }}P} \right)\) for a / b will be:

\(V{\bf{ }} = {\bf{ }}\left\{ {0,1,2,3,4,5,6,7,8,9,{\bf{ }} + ,{\bf{ }} - ,{\bf{ }}/,{\bf{ }}{\rm{sign, digit, positive digit, integer, signed integer, positive integer, slash}},{\bf{ }}S} \right\}\)

\(T = {\bf{ }}\left\{ {0,1,2,3,4,5,6,7,8,9,{\bf{ }} + ,{\bf{ }} - } \right\}\)

Hence, the productions are, in addition to the productions given above for a signed integer and a positive integer:

S \(\to\) < signed integer >< slash >< positive integer > < slash > \(\to\) /.

03

Backus-Naur form of productions of the above grammar.

(b)The productions for the grammar created for part (a), all have a single non-terminal on the left-hand side.

Thus, this grammar is type 2 grammar.

The grammar is converted to the Backus-Naur form by combining the productions which have the same non-terminal on the left-hand side into a single product; and by replacing " with:: =”

This gives the following productions.

\(\begin{array}{l}S{\bf{ }}:: = < {\bf{ }}{\rm{signed integer}}{\bf{ }} > < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\bf{ }}{\rm{positive integer}}{\bf{ }} > {\bf{ }}\\ < {\bf{ }}{\rm{slash}}{\bf{ }} > :: = {\bf{ }}/{\bf{ }}\\ < {\bf{ }}{\rm{positive integer}}{\bf{ }} > :: = < {\bf{ }}{\rm{positive digit}}{\bf{ }} > < {\bf{ }}{\rm{other digits}} > {\bf{ }}\\ < {\rm{other digits}}{\bf{ }} > :{\bf{ }} = < {\bf{ }}{\rm{integer}}{\bf{ }} > |\lambda {\bf{ }}\\ < {\rm{signed integer}}{\bf{ }} > :: = < {\bf{ }}{\rm{sign}}{\bf{ }} > < {\rm{ integer}}{\bf{ }} > {\bf{ }}\\ < {\bf{ }}{\rm{sign}}{\bf{ }} > :: = - I + {\bf{ }}\\ < {\bf{ }}{\rm{int eger}}{\bf{ }} > :: = < {\bf{ }}{\rm{integer}}{\bf{ }} > < {\bf{ }}{\rm{digit}}{\bf{ }} > l < {\bf{ }}{\rm{digit}}{\bf{ }} > {\bf{ }}\\ < {\rm{digit}}{\bf{ }} > :: = < {\bf{ }}{\rm{positive digit}}{\bf{ }} > |0{\bf{ }}\\ < {\rm{ positive digit}}{\bf{ }} > :: = 0|1|2|3|4|5|6|7|8|9{\rm{ }}\end{array}\)

Hence, the above productions is The Backus–Naur of productions form of the grammar G.

04

To get the derivation tree for +311/7 first we do a top-down derivation for it, which is:

(c)Now, the deviation is

\(\begin{array}{c}S{\bf{ }} = > < {\bf{ }}{\rm{signed integer}}{\bf{ }} > < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\bf{ }}{\rm{positive integer}}{\bf{ }} > {\bf{ }}\\ = > < {\bf{ }}{\rm{sign}}{\bf{ }} > < {\bf{ }}{\rm{integer}}{\bf{ }} > < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\bf{ }}{\rm{positive integer}}{\bf{ }} > {\bf{ }}\\ = > {\bf{ }} + {\bf{ }} < {\rm{integer}}{\bf{ }} > < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\bf{ }}{\rm{positive}}\,\,{\rm{integer}} > {\bf{ }}\\ = > {\bf{ }} + {\bf{ }} < {\bf{ }}{\rm{integer}}{\bf{ }} > < {\bf{ }}{\rm{digit}}{\bf{ }} > < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\bf{ }}{\rm{positive integer}}{\bf{ }} > \\ = > {\bf{ }} + {\bf{ }} < {\rm{integer}}{\bf{ }} > {\bf{ }}|{\bf{ }} < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\bf{ }}{\rm{positiveinteger}} > {\bf{ }}\\ = > {\bf{ }} + {\bf{ }} < {\bf{ }}{\rm{integer}}{\bf{ }} > < {\bf{ }}{\rm{digit}}{\bf{ }} > {\bf{ }}||{\bf{ }} < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\bf{ }}{\rm{positive integer}}{\bf{ }} > {\bf{ }}\\ = > {\bf{ }} + {\bf{ }} < {\bf{ }}{\rm{integer}}{\bf{ }} > {\bf{ }}||{\bf{ }} < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\bf{ }}{\rm{positive}}\,\,{\rm{integer}} > {\bf{ }}\\ = > {\bf{ }} + {\bf{ }} < {\bf{ }}{\rm{digit}}{\bf{ }} > {\bf{ }}||{\bf{ }} < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\bf{ }}{\rm{positive}}\,\,{\rm{integer}}{\bf{ }} > \\ = > {\bf{ }} + 311{\bf{ }} < {\bf{ }}{\rm{slash}}{\bf{ }} > < {\bf{ }}{\rm{positive integer}}{\bf{ }} > {\bf{ }}\\ = > {\bf{ }} + 311/{\bf{ }} < {\bf{ }}{\rm{positive}}\,\,{\rm{integer}} > {\bf{ }}\\ = > {\bf{ }} + 311/{\bf{ }} < {\bf{ }}{\rm{positive digit}}{\bf{ }} > < {\bf{ }}{\rm{other digits}}{\bf{ }} > {\bf{ }}\\ = > {\bf{ }} + 311/{\bf{ }}7{\bf{ }} < {\bf{ }}{\rm{other digits}}{\bf{ }} > \\ = > {\bf{ }} + 311/{\bf{ }}7\lambda {\bf{ }}\\ = > + 311/7{\bf{ }}\end{array}\)

Let’s construct a derivation tree for +311/17 in the above grammar is.

Hence, the above derivation tree for +311/17.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free