Chapter 13: Q29E (page 876)
Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain three consecutive 1s.
Short Answer
The result is
State | 0 | 1 |
\({{\bf{s}}_{\bf{0}}}\) | \({{\bf{s}}_{\bf{0}}}\) | \({{\bf{s}}_{\bf{1}}}\) |
\({{\bf{s}}_{\bf{1}}}\) | \({{\bf{s}}_{\bf{0}}}\) | \({{\bf{s}}_{\bf{2}}}\) |
\({{\bf{s}}_{\bf{2}}}\) | \({{\bf{s}}_{\bf{0}}}\) | \({{\bf{s}}_{\bf{3}}}\) |
\({{\bf{s}}_{\bf{3}}}\) | \({{\bf{s}}_{\bf{3}}}\) | \({{\bf{s}}_{\bf{3}}}\) |