Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that contain three consecutive 1s.

Short Answer

Expert verified

The result is

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construction of deterministic finite-state automaton.

Let us consider five states \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\).

Let start state be \({{\bf{s}}_{\bf{0}}}\).

Now \({{\bf{s}}_{\bf{1}}}\) has last digits was 1.

The state \({{\bf{s}}_{\bf{2}}}\) give that the last digits are two 0’s.

The state \({{\bf{s}}_{\bf{3}}}\) shows that the string contains 111.

The state \({{\bf{s}}_{\bf{3}}}\) will be final state and contains three consecutive 1’s.

It moves from \({{\bf{s}}_{\bf{0}}}\)to \({{\bf{s}}_{\bf{1}}}\), if it comes across a 1, else It remains at \({{\bf{s}}_{\bf{0}}}\).

It moves from \({{\bf{s}}_{\bf{1}}}\)to\({{\bf{s}}_{\bf{2}}}\) , if there is second 1, else It moves back at\({{\bf{s}}_{\bf{0}}}\).

It moves from \({{\bf{s}}_{\bf{2}}}\)to\({{\bf{s}}_{\bf{3}}}\) , if there is third 1, else It moves back at \({{\bf{s}}_{\bf{0}}}\).

Once it arrived at \({{\bf{s}}_{\bf{3}}}\), It will remain there.

02

Sketch of deterministic finite-state automaton.

The sketch of deterministic finite-state automation can be drawn by five states\({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\). The sketch is

03

Other way of representing in tabular form.

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

Therefore, this is the require construction.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free