Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that do not contain three consecutive 0s.

Short Answer

Expert verified

The result is:

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

Step by step solution

01

Construction of deterministic finite-state automaton.

Let's start state be\({{\bf{s}}_{\bf{0}}}\).

\({{\bf{s}}_{\bf{0}}}\)shows that the last two digits were 0.

\({{\bf{s}}_{\bf{1}}}\)has the last two digits was 00.

\({{\bf{s}}_{\bf{2}}}\)give that the last two digits were 00.

\({{\bf{s}}_{\bf{3}}}\)shows that the string contains 000.

\({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}\)and \({{\bf{s}}_{\bf{2}}}\)all are in the final state. As I will make sure that all strings containing three consecutive zero ends at state\({{\bf{s}}_{\bf{3}}}\).

I move from \({{\bf{s}}_{\bf{0}}}\)to\({{\bf{s}}_{\bf{1}}}\), if I come across a 0, else I remain at\({{\bf{s}}_{\bf{0}}}\).

I move from \({{\bf{s}}_{\bf{1}}}\)to\({{\bf{s}}_{\bf{2}}}\) , if there is a second 0, else I move back to at\({{\bf{s}}_{\bf{0}}}\).

I move from \({{\bf{s}}_{\bf{2}}}\)to\({{\bf{s}}_{\bf{3}}}\), if there is a third 0, else I move back to\({{\bf{s}}_{\bf{0}}}\). Once I arrived at\({{\bf{s}}_{\bf{3}}}\), I will remain there.

02

Sketch of deterministic finite-state automaton.

03

Another way of representing in tabular form.

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

Therefore, this is the required construction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free