Chapter 13: Q26E (page 876)
Construct a deterministic finite-state automaton that recognizes the set of all bit strings that do not contain three consecutive 0s.
Short Answer
The result is:
State | 0 | 1 |
\({{\bf{s}}_{\bf{0}}}\) | \({{\bf{s}}_{\bf{0}}}\) | \({{\bf{s}}_{\bf{1}}}\) |
\({{\bf{s}}_{\bf{1}}}\) | \({{\bf{s}}_{\bf{2}}}\) | \({{\bf{s}}_{\bf{0}}}\) |
\({{\bf{s}}_{\bf{2}}}\) | \({{\bf{s}}_{\bf{3}}}\) | \({{\bf{s}}_{\bf{0}}}\) |
\({{\bf{s}}_{\bf{3}}}\) | \({{\bf{s}}_{\bf{3}}}\) | \({{\bf{s}}_{\bf{3}}}\) |