Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let G be the grammar with V = {a, b, c, S}; T = {a, b, c}; starting symbol S; and productions \({\bf{S }} \to {\bf{ abS, S }} \to {\bf{ bcS, S }} \to {\bf{ bbS, S }} \to {\bf{ a, and S }} \to {\bf{ cb}}{\bf{.}}\)Construct derivation trees for

\(\begin{array}{*{20}{l}}{{\bf{a) bcbba}}{\bf{.}}}\\{{\bf{b) bbbcbba}}{\bf{.}}}\\{{\bf{c) bcabbbbbcb}}{\bf{.}}}\end{array}\)

Short Answer

Expert verified

(a) The derivation tree for \({\bf{bcbba}}\)is,

(b) The derivation tree for \({\bf{bbbcbba}}\)is,

(c)The derivation tree for \({\bf{bcabbbbbcb}}\)is,

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition of derivative tree

An ordered rooted tree, also known as a derivation or parse tree, can graphically express a derivation in the language produced by context-free grammar.

02

Now, Use the given information and construct a derivation tree for \({\bf{bcbba}}\).

(a)

Using the given information and let’s starting the symbol ‘S’;

\(\begin{array}{c}{\bf{S }} \to {\bf{ bcS}}\\ \to {\bf{ bc}}\left( {{\bf{bbS}}} \right)\\{\bf{ }} \to {\bf{ bcbb}}\left( {\bf{a}} \right)\\ \to {\bf{ bcbba}}\end{array}\)

Let’s construct a derivation tree,

Hence, the above derivation tree for\({\bf{bcbba}}\).

03

Now, Use the given information and construct a derivation tree for \({\bf{bbbcbba}}\).

(b)

Using the given information and let’s starting the symbol ‘S’;

\(\begin{array}{c}{\bf{S }} \to {\bf{ bbS}}\\ \to {\bf{ bb}}\left( {{\bf{bcS}}} \right)\\{\bf{ }} \to {\bf{ bbbc}}\left( {{\bf{bbS}}} \right)\\ \to {\bf{ bbbcbb}}\left( {\bf{a}} \right)\\ \to {\bf{ bbbcbba}}\end{array}\)

Let’s construct a derivation tree,

Hence, the above derivation tree for\({\bf{bbbcbba}}\).

04

Now, Use the given information and construct derivation tree for \({\bf{bcabbbbbcb}}\).

Using the given information and let’s starting symbol ‘S’;

\(\begin{array}{c}{\bf{S }} \to {\bf{ bcS}}\\ \to {\bf{ bc}}\left( {{\bf{abS}}} \right)\\{\bf{ }} \to {\bf{ bcab}}\left( {{\bf{bbS}}} \right)\\ \to {\bf{ bcabbb}}\left( {{\bf{bbS}}} \right)\\ \to {\bf{ bcabbbbb}}\left( {{\bf{cb}}} \right)\\ \to {\bf{ bcabbbbbcb}}\end{array}\)

Let’s construct derivation tree,

Hence, the above derivation tree for\({\bf{bcabbbbbcb}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Describe how productions for a grammar in extended Backus–Naur form can be translated into a set of productions for the grammar in Backus–Naur form.

This is the Backus–Naur form that describes the syntax of expressions in postfix (or reverse Polish) notation.

\(\begin{array}{c}\left\langle {{\bf{expression}}} \right\rangle {\bf{ :: = }}\left\langle {{\bf{term}}} \right\rangle {\bf{|}}\left\langle {{\bf{term}}} \right\rangle \left\langle {{\bf{term}}} \right\rangle \left\langle {{\bf{addOperator}}} \right\rangle \\{\bf{ }}\left\langle {{\bf{addOperator}}} \right\rangle {\bf{:: = + | - }}\\\left\langle {{\bf{term}}} \right\rangle {\bf{:: = }}\left\langle {{\bf{factor}}} \right\rangle {\bf{|}}\left\langle {{\bf{factor}}} \right\rangle \left\langle {{\bf{factor}}} \right\rangle \left\langle {{\bf{mulOperator}}} \right\rangle {\bf{ }}\\\left\langle {{\bf{mulOperator}}} \right\rangle {\bf{:: = *|/}}\\\left\langle {{\bf{factor}}} \right\rangle {\bf{:: = }}\left\langle {{\bf{identifier}}} \right\rangle {\bf{|}}\left\langle {{\bf{expression }}} \right\rangle \\\left\langle {{\bf{identifier}}} \right\rangle {\bf{:: = a }}\left| {{\bf{ b }}} \right|...{\bf{| z}}\end{array}\)

Construct a Turing machine that recognizes the set of all bit strings that contain an even number of \({\bf{1's}}\).

For each of these strings, determine whether it is generated by the grammar for infix expressions from Exercise 40. If it is, find the steps used to generate the string.

\(\begin{array}{*{20}{l}}{{\bf{a) x + y + z}}}\\{{\bf{b) a/b + c/d}}}\\{{\bf{c) m*}}\left( {{\bf{n + p}}} \right)}\\{{\bf{d) + m - n + p - q}}}\\{{\bf{e) }}\left( {{\bf{m + n}}} \right){\bf{*}}\left( {{\bf{p - q}}} \right)}\end{array}\)

Find the output generated from the input string 01110 for the finite-state machine with the state table in

a) Exercise 1(a).

b) Exercise 1(b).

c) Exercise 1(c).

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free