Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that if \(A\) is a regular set, then so is \(\bar A\).

Short Answer

Expert verified

The give A is regular then \(\bar A\) is also regular

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition 

For any Regular Expression r that represents Language \(L(r)\), there is a Finite Automata that accepts the same language.

02

Proving that A is regular

You invoke the power of Kleene's theorem here. If A is a regular set, then there is a deterministic finite automaton that accepts A. If you take the same machine but make all the final states nonfinal and all the nonfinal states final, then the result will accept precisely \(\bar A\). Therefore \(\bar A\) is regular.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that these equalities hold.

a) \({{\bf{\{ \lambda \} }}^{\bf{*}}}{\bf{ = \{ \lambda \} }}\)

b) \({\bf{(A*)* = A*}}\) for every set of strings A.

Suppose that A is a subset of\({{\bf{V}}^{\bf{*}}}\)where V is an alphabet.Prove or disprove each of these statements.

\(\begin{array}{l}{\bf{a)}}\,\,{\bf{A}} \subseteq {{\bf{A}}^{\bf{2}}}\\{\bf{b)}}\,\,{\bf{if}}\,{\bf{A = }}{{\bf{A}}^{\bf{2}}}{\bf{,then}}\,{\bf{\lambda }} \in {\bf{A}}\\{\bf{c)}}\,\,{\bf{A\{ \lambda \} = A}}\\{\bf{d)}}\,\,{{\bf{(}}{{\bf{A}}^{\bf{*}}}{\bf{)}}^{\bf{*}}}{\bf{ = }}{{\bf{A}}^{\bf{*}}}\\{\bf{e)}}\,\,{{\bf{A}}^{\bf{*}}}{\bf{A = }}{{\bf{A}}^{\bf{*}}}\\{\bf{f)}}\,\,\left| {{{\bf{A}}^{\bf{n}}}} \right|{\bf{ = }}{\left| {\bf{A}} \right|^{\bf{n}}}\end{array}\)

Find a phrase-structure grammar for each of these languages.

a) the set of all bit strings containing an even number of 0s and no 1s

b) the set of all bit strings made up of a 1 followed by an odd number of 0s

c) the set of all bit strings containing an even number of 0s and an even number of 1s

d) the set of all strings containing 10 or more 0s and no 1s

e) the set of all strings containing more 0s than 1s

f) the set of all strings containing an equal number of 0s and 1s

g) the set of all strings containing an unequal number of 0s and 1s

Determine whether the string 01001 is in each of these sets.

a){0,1}* b){0}*{10}{1}*

c){010}*{0}*{1} d){010,011} {00,01}

e){00} {0}*{01} f){01}*{01}*

For each of these strings, determine whether it is generated by the grammar for infix expressions from Exercise 40. If it is, find the steps used to generate the string.

\(\begin{array}{*{20}{l}}{{\bf{a) x + y + z}}}\\{{\bf{b) a/b + c/d}}}\\{{\bf{c) m*}}\left( {{\bf{n + p}}} \right)}\\{{\bf{d) + m - n + p - q}}}\\{{\bf{e) }}\left( {{\bf{m + n}}} \right){\bf{*}}\left( {{\bf{p - q}}} \right)}\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free