Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct a deterministic finite-state automaton that recognizes the set of all bit strings beginning with 01.

Short Answer

Expert verified

The result is:

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Construction of deterministic finite-state automaton.

Let \({\bf{S = \{ 01\} \{ 0,1\} *}}\)

Let's start state be \({{\bf{s}}_{\bf{0}}}\). Since the empty string is not in the set S, \({{\bf{s}}_{\bf{0}}}\) is not a final state.

If the input starts with a 1, then I move on to a non-final state \({{\bf{s}}_{\bf{1}}}\) and remain there no matter what the next bits are.

If the input starts with a0, then I move on to a non-final state \({{\bf{s}}_{\bf{2}}}\). If the next digit is a 0, then I move on to \({{\bf{s}}_{\bf{1}}}\) and remain there no matter what the next bits are. If the next digit was a 1, then I move to the final state \({{\bf{s}}_{\bf{3}}}\) and remain there no matter what the next bits are.

02

Sketch of deterministic finite-state automaton.

03

Another way of representing in tabular form.

State

0

1

\({{\bf{s}}_{\bf{0}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{3}}}\)

Therefore, this is the required construction.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine whether 1011 belongs to each of these regular sets.

  1. \({\bf{1}}0{\bf{*}}1{\bf{*}}\)
  2. \(0{\bf{*}}\left( {10 \cup 11} \right){\bf{*}}\)
  3. \(1\left( {01} \right){\bf{*1*}}\)
  4. \(1{\bf{*}}01\left( {0 \cup 1} \right)\)
  5. \(\left( {10} \right){\bf{*}}\left( {11} \right){\bf{*}}\)
  6. \(1\left( {00} \right){\bf{*}}\left( {{\bf{11}}} \right){\bf{*}}\)
  7. \(\left( {10} \right){\bf{*}}10{\bf{1}}1\)
  8. \(\left( {1 \cup 00} \right)\left( {01 \cup 0} \right)1{\bf{*}}\)

Construct phrase-structure grammars to generate each of these sets.

a) \(\left\{ {\left. {{{\bf{0}}^{\bf{n}}}} \right|{\bf{n}} \ge {\bf{0}}} \right\}\)

b) \(\left\{ {\left. {{{\bf{1}}^{\bf{n}}}{\bf{0}}} \right|{\bf{n}} \ge {\bf{0}}} \right\}\)

c) \(\left\{ {\left. {{{\left( {{\bf{000}}} \right)}^{\bf{n}}}} \right|{\bf{n}} \ge {\bf{0}}} \right\}\)

In Exercises 43โ€“49 find the language recognized by the given nondeterministic finite-state automaton.

Describe how productions for a grammar in extended Backusโ€“Naur form can be translated into a set of productions for the grammar in Backusโ€“Naur form.

This is the Backusโ€“Naur form that describes the syntax of expressions in postfix (or reverse Polish) notation.

\(\begin{array}{c}\left\langle {{\bf{expression}}} \right\rangle {\bf{ :: = }}\left\langle {{\bf{term}}} \right\rangle {\bf{|}}\left\langle {{\bf{term}}} \right\rangle \left\langle {{\bf{term}}} \right\rangle \left\langle {{\bf{addOperator}}} \right\rangle \\{\bf{ }}\left\langle {{\bf{addOperator}}} \right\rangle {\bf{:: = + | - }}\\\left\langle {{\bf{term}}} \right\rangle {\bf{:: = }}\left\langle {{\bf{factor}}} \right\rangle {\bf{|}}\left\langle {{\bf{factor}}} \right\rangle \left\langle {{\bf{factor}}} \right\rangle \left\langle {{\bf{mulOperator}}} \right\rangle {\bf{ }}\\\left\langle {{\bf{mulOperator}}} \right\rangle {\bf{:: = *|/}}\\\left\langle {{\bf{factor}}} \right\rangle {\bf{:: = }}\left\langle {{\bf{identifier}}} \right\rangle {\bf{|}}\left\langle {{\bf{expression }}} \right\rangle \\\left\langle {{\bf{identifier}}} \right\rangle {\bf{:: = a }}\left| {{\bf{ b }}} \right|...{\bf{| z}}\end{array}\)

Show that the set \(\left\{ {{{\bf{1}}^{{{\bf{n}}^2}}}\left| {{\bf{n = 0,1,2,}}...} \right.} \right\}\) is not regular using the pumping lemma from Exercise 22.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free