Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 16–22 find the language recognized by the given deterministic finite-state automaton

Short Answer

Expert verified

The result is:

\({\bf{L(M) = }}\lambda \cup {\bf{\{ 0\} \{ 1\} \{ 0\} }} \cup {\bf{\{ 10,11\} \{ 0,1\} }} \cup {\bf{\{ 0\} \{ 1\} \{ 01\} \{ 0,1\} }} \cup {\bf{\{ 0\} \{ 1\} \{ 00\} \{ 0\} \{ 1\} \{ 0,1\} }}*\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

According to the figure.

Here the given figure contains five states\({{\bf{s}}_{\bf{o}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}{\bf{,}}{{\bf{s}}_{\bf{5}}}\).

If there is an arrow from \({{\bf{s}}_{\bf{i}}}\)to \({{\bf{s}}_{\bf{j}}}\)with label x, then we write it down in a row \({{\bf{s}}_{\bf{j}}}\)and in the row \({{\bf{s}}_{\bf{i}}}\)and in column x of the following table.

State

0

1

\({{\bf{s}}_{\bf{o}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{1}}}\)

\({{\bf{s}}_{\bf{2}}}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_{\bf{3}}}\)

\({{\bf{s}}_{\bf{5}}}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_{\bf{4}}}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_{\bf{5}}}\)

\({{\bf{s}}_{\bf{5}}}\)

\({{\bf{s}}_4}\)

\({{\bf{s}}_{\bf{o}}}\)is marked as the start state.

02

Find the final result.

Because\({{\bf{s}}_{\bf{o}}}\)is the final state, the empty string is accepted. The string that drives the machine to the final state \({{\bf{s}}_{\bf{3}}}\)is precise\({\bf{\{ 0\} \{ 1\} \{ 0\} }}\).

There are three ways to get to the final state\({{\bf{s}}_{\bf{4}}}\), and once I get three, I stay there. The path thorough \({{\bf{s}}_{\bf{2}}}\)tells those strings in \({\bf{\{ 10,11\} \{ 0,1\} }}\) are accepted.

The path \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{4}}}\) tells that the strings in \({\bf{\{ 0\} \{ 1\} \{ 01\} \{ 0,1\} }}\) are accepted and the path \({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}{\bf{,}}{{\bf{s}}_{\bf{5}}},{{\bf{s}}_{\bf{4}}}\)tells those strings in \({\bf{\{ 0\} \{ 1\} \{ 00\} \{ 0\} \{ 1\} \{ 0,1\} *}}\)are accepted.

Therefore, the language recognized by machines is:

\({\bf{L(M) = }}\lambda \cup {\bf{\{ 0\} \{ 1\} \{ 0\} }} \cup {\bf{\{ 10,11\} \{ 0,1\} }} \cup {\bf{\{ 0\} \{ 1\} \{ 01\} \{ 0,1\} }} \cup {\bf{\{ 0\} \{ 1\} \{ 00\} \{ 0\} \{ 1\} \{ 0,1\} }}*\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free