Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Construct the state diagram for the Moore machine with this state table.

Short Answer

Expert verified

Therefore, the Moore machine state diagram is shown below.

Step by step solution

01

General form

Moore machine (Definition):

A Moore machine\({\bf{M = }}\left( {{\bf{S,}}\,\,{\bf{I,}}\,\,{\bf{O,}}\,\,{\bf{f,}}\,\,{\bf{g,}}\,\,{{\bf{s}}_0}} \right)\)consists of a finite set of states, an input alphabet I, an output alphabet O, a transition function f that assigns the next state to every pair of a state, and an input, an output function g that assigns an output to every state, and a starting state\({{\bf{s}}_0}\).

A Moore machine can be represented either by a table listing the transitions for each pair of states and input and the outputs for each state, or by a state diagram that displays the states, the transitions between states, and the output for each state. In the diagram, transitions are indicated with arrows labeled with the input, and the outputs are shown next to the states.

02

Step 2: Construct a Moore machine diagram

Given that, the state table is shown below.

Using the above Moore machine draw the state diagram.

Construction:

We make a node for each state:\({{\bf{s}}_{\bf{0}}}{\bf{,}}{{\bf{s}}_{\bf{1}}}{\bf{,}}{{\bf{s}}_{\bf{2}}}{\bf{,}}{{\bf{s}}_{\bf{3}}}\).

\({{\bf{s}}_{\bf{0}}}\)is assigned as the start.

Then the arrow from \({{\bf{s}}_{\bf{i}}}\) to \({{\bf{s}}_{\bf{j}}}\) with label a, if \({{\bf{s}}_{\bf{j}}}\) is mentioned in the row \({{\bf{s}}_{\bf{i}}}\) and in the column an of the given table.

The label of a state is the output at the state.

Note: the output is given under “g” in the table.

The state diagram for the Moore machine is shown below:

Hence, the result shows the required state diagram of the Moore machine.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

In Exercises 43–49 find the language recognized by the given nondeterministic finite-state automaton.

Describe how productions for a grammar in extended Backus–Naur form can be translated into a set of productions for the grammar in Backus–Naur form.

This is the Backus–Naur form that describes the syntax of expressions in postfix (or reverse Polish) notation.

\(\begin{array}{c}\left\langle {{\bf{expression}}} \right\rangle {\bf{ :: = }}\left\langle {{\bf{term}}} \right\rangle {\bf{|}}\left\langle {{\bf{term}}} \right\rangle \left\langle {{\bf{term}}} \right\rangle \left\langle {{\bf{addOperator}}} \right\rangle \\{\bf{ }}\left\langle {{\bf{addOperator}}} \right\rangle {\bf{:: = + | - }}\\\left\langle {{\bf{term}}} \right\rangle {\bf{:: = }}\left\langle {{\bf{factor}}} \right\rangle {\bf{|}}\left\langle {{\bf{factor}}} \right\rangle \left\langle {{\bf{factor}}} \right\rangle \left\langle {{\bf{mulOperator}}} \right\rangle {\bf{ }}\\\left\langle {{\bf{mulOperator}}} \right\rangle {\bf{:: = *|/}}\\\left\langle {{\bf{factor}}} \right\rangle {\bf{:: = }}\left\langle {{\bf{identifier}}} \right\rangle {\bf{|}}\left\langle {{\bf{expression }}} \right\rangle \\\left\langle {{\bf{identifier}}} \right\rangle {\bf{:: = a }}\left| {{\bf{ b }}} \right|...{\bf{| z}}\end{array}\)

Construct a deterministic finite-state automaton that recognizes the set of all bit strings that end with 10.

a) Construct a phrase-structure grammar for the set of all fractions of the form a/b, where a is a signed integer in decimal notation and b is a positive integer.

b) What is the Backus–Naur form for this grammar?

c) Construct a derivation tree for +311/17 in this grammar.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free